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Abstract

Modalities provide powerful abstractions for various problems in mathematics and
computer science. For example, they find applications in staged programming [44],
program security properties [1, 70], reactive programming [15, 71], concurrency [87]
and step-indexing [22, 89].

Type theory combines logic and programming in one language. This allows
us to write and reason about programs in type theory, as well as to interpret other
programming languages.

The goal of this thesis is twofold: On one hand, we explore applications of a
specific modal type theory, namely guarded type theory, in programming language
semantics. On the other hand, we describe how a general framework for modal type
theories can be turned into a proof assistant.

In §2 and §3 we show how to use a constructive guarded type theory to reason
about FPC, a programming language with recursive types, and FPC, which extends
FPC by probabilistic choice. We define both operational and denotational semantics
for FPC and FPC, and prove soundness. By doing this, we provide the first semantics
of FPCg in constructive type theory. Finally, we construct a relation between syntax
and semantics and show how to prove contextual equivalence between programs. It is
difficult to reason about languages with recursion and computational effects such as
probabilistic choice, because these features have no obvious counterpart in type theory.
By using the later modality of guarded type theory and a special guarded fixpoint
combinator, it is possible to define semantic domains that interpret these effects.

Using modalities to abstract low-level details away significantly simplifies the
task at hand for practitioners. To truly benefit from these capabilities, a proof assistant
that automates simpler arguments and validates the correctness of complicated proofs
is of the essence. However, implementing a proof assistant is a difficult undertaking
and unfortunately, many modalities cannot be handled by current proof assistants.

In $4 we explain how to implement the general modal type theory MTT, which can
internalize many different modal situations. Importantly, this includes a guarded type
theory comparable to the one used in §2 and §3. However, the framework is general
enough to internalize arbitrary collections of (dependent) right adjoints [25]. The
resulting proof assistant mitten is modular and specializes to many modal situations.






Resumé

Modal operatorer er blevet studeret i mange ar i matematisk logic. Modal operatorer
finder ogsa anvendelse inden for datalogi, hvor de for eksempel bruges ifbm. partiel
evaluering [44], type sysetmer for non-interference [1, 70], reaktiv programmering
[15, 71], concurrency [87] og sakaldte step-indekserede programlogikker [22, 89].

Typeteori kombinerer logik og programmering i ét sprog. Det er nyttigt bade
til at resonnere over programmer skrevet i typeteori og til at resonnere over andre
programmeringssprog inden for typeteori.

Malet med denne athandling er todelt: P4 den ene side udforsker vi anvendelser af
modale typeteorier i programmeringssprogs semantik. Pa den anden side beskriver vi,
hvordan en generel teori for modale typeteorier kan implementeres i en bevisassistent.

I §2 og §3 viser vi hvordan man bruger guarded typeteori til at definere og
reesonnere om FPC, et programmeringssprog med rekursive typer, og FPCg, som
udvider FPC med probabilistiske valg. Vi definerer bade operationel og denotationel
semantik og beviser sundhed. Endelig konstruerer vi en relation mellem de to og
viser, hvordan man kan bruge den til at r&esonnere om programmer op til kontekstuel
ekvivalens.

Det er velkendt, at det er meget udfordrende at r&esonnere om sprog med rekursion
og beregningseffekter som f.eks. probabilistiske valg, fordi disse effekter er svere at
repraesentere i typeteori. Ved at anvende guarded typeteori er det muligt at definere
semantiske domaner, der fortolker disse effekter.

En af fordelene ved modal typeteori er at man kan abstrahere fra mange lav-
niveau detaljer. For virkelig at drage fordel af disse muligheder er det vigtigt med
en bevisassistent, der automatiserer enklere argumenter og validerer korrektheden
af komplicerede beviser. Det er dog en vanskelig opgave at implementere en be-
visassistent, og desvearre kan mange modaliteter ikke handteres af de eksisterende
bevisassistener.

I §4 viser vi, hvordan man implementerer den generelle modale typeteori MTT,
som kan internalisere mange forskellige modale situationer. MTT inkluderer en
variant af guarded typeteori, lig den der bruges i §2 og §3. MTT er generel nok til at
internalisere vilkarlige samlinger af (afhaengige) hgjre adjoints [25]. Den resulterende
bevisassistent mitten er modular og kan instantieres til mange specifikke modale
situationer.
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Chapter 1

Introduction

Modal type theories have been used widely to abstract concrete problems in computer
science and mathematics. To name a few examples, the different iterations of guarded
type theories use the later modality to integrate guarded recursion into type theory
[14, 23, 25, 27, 57, 60, 72, 89]. Additionally, one can realize coinductive types by
combining guarded recursion with the everything now modality [28, 36] or clock
quantification [13, 72, 80].

Cohesive homotopy type theory [99] uses modalities to combine the viewpoints
of topology and homotopy theory in one framework (as proposed by Lawvere [74]).

More on the computer science side of things, Kavvos [70] uses the modalities
of [99] to tackle program security properties, refining previous work of Abadi et al.
[1]. Furthermore, modalities have been used for distributed systems [87], reactive
programming [15, 71] and staged computation [44]. They also proved to be useful in
higher-order concurrent separation logics [23, 69].

The goal of this thesis is twofold: On one hand we explore applications of guarded
type theories in programming language semantics. On the other hand, we describe
how a general framework for modal type theories can be turned into a proof assistant.

Programming language semantics in guarded type theory Intensional type theo-
ries recently got more appreciation, as the emergence of homotopy type theory [106]
displayed that type theories can be very useful reasoning tools if they are related to
ordinary mathematics (as HoTT is via the simplicial sets interpretation). Homotopy
Type Theory simplifies many difficult constructions of homotopy theory and most
importantly allows computer-aided verification of complicated proofs.

In the same spirit, guarded type theories are a powerful abstraction of step-indexing
techniques [11, 12] and metric domain theory [10, 49]. The archetypical example of a
guarded type theory is the internal language of the topos of trees [23].

Our goal is to use this connection between type theories and mathematics to
interpret effectful programming languages. More specifically, we investigate how
one can develop operational and denotational semantics of FPC — a programming
language with recursive types — as well as its probabilistic extension FPC in a

3



4 CHAPTER 1. INTRODUCTION

constructive guarded type theory. Since FPCg supports the sampling of random
values from a probability distribution, a program evaluates to distribution over values,
as opposed to a single value in the case of ordinary deterministic computation. In
combination with general recursion, this allows us to write programs that evaluate to
distributions with infinite support.

Interpreting a higher-order probabilistic programming language with recursion is
no easy task, and specifically, two factors complicate such a development for us:

1. We want to interpret recursive types (X .7 and thus there ought to be a domain
validating [uX.7] = [t[uX.7/X]] definable in our meta theory. Unlike with
e.g. products or coproducts, there is no meta-level type former that could realize
such an interpretation directly: It is well known that type theories cannot have
unrestricted recursion, as otherwise the relation to ordinary math is lost.

Phrased differently, FPC and FPCg4 encompass non-terminating programs,
which do not have direct counterparts in type theory.

2. In previous works, the operational semantics of FPCg, relies on real numbers
and non-constructive reasoning. This is not possible in a constructive meta-
theory.

It turns out that both of these challenges can be met by combining features of
homotopy type theory and guarded type theory.

The specific type theory we use is Clocked Cubical Type Theory (CCTT), which
combines cubical type theory (a variant of homotopy type theory) with clocked type
theory. It provides the modal type former >* (pronounced ‘later’), which is indexed
by a clock k. Terms of type >¥A can be thought of only being accessible after one
computation step. We can now use the guarded fixpoint combinator fix* to define the
guarded partiality monad' L¥ which validates LXA ~ A +>¥(L¥A). This can be used
to interpret recursive types.

To address the second challenge, we marry a distribution monad with the guarded
partiality monad, we call this novel monad guarded convex delay monad and denote it
by D¥. It is defined by D¥A ~ 2(A +1*(D*A)), where the finite distibution monad
2 can be constructed as a higher inductive type.

Using this, we can define the operational and denotational semantics of FPCg
completely in CCTT. We furthermore internalize the concept of contextual equivalence
— the correct notion of equality between terms of a programming language. While the
denotational semantics does not respect contextual equivalence, we can use guarded
recursion to define a relation between semantics and syntax which implies it. This
relies yet on another feature of CCTT, namely clock quantification, which collapses the
delays induced by > [13]. We have that Vx.>*A ~ Vk.A, which we crucially leverage
when proving that our logical relation (which was defined by guarded recursion)
implies the (not step-indexed) notion of contextual refinement. In the end, we display
the utility of such an approach with various examples.

I'This monad is also known as ‘guarded delay monad’
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This dissertation contains a technical report §2 which showcases this technique on
call-by-value FPC. §3 is the paper expanding these results to FPCg,.

Implementing a multimodal proof assistant Using modalities to abstract low-
level details away significantly simplifies the task at hand for practitioners. To truly
benefit from these capabilities, a proof assistant that automates simpler arguments
and validates the correctness of complicated proofs is of the essence. However,
implementing proof assistants is a difficult undertaking and unfortunately, many
modalities cannot be handled by the existing ones.

It is in general challenging to integrate modalities into dependent type theories.
This is because they often do not fit into their framework — in particular, they do not
necessarily respect substitution. Therefore, to obtain a workable type theory, one has
to augment the judgmental structure, using dual context calculi [92] or a Fitch-style
type theory to finesse around the problem. Since such a structure is unique to the
modal situation, every modality requires its own proof assistant — an unreasonable
effort.

Birkedal et al. [24] identified a class of modalities, namely those that behave like
dependent right adjoints, which can be treated in a unified framework by using a
Fitch-style type theory. This approach has been refined by Gratzer et al. [58] who
introduced multimode type theory (MTT), a framework, which can be instantiated
with arbitrary collections of dependent right adjoints. In particular, it allows combina-
tions of different modalities and to define interactions between them. Importantly, the
everything now modality [28, 36] and guarded recursion fall in this framework. This
allows us to realize a type theory with coinductive types and is thereby an alternative
approach to clocked type theory.

A proof assistant for MTT should be modular and specialize to any modal situation
— thereby realizing the proof assistant that was previously impractical.

In the following, we start by informally introducing high-level ideas underlying
coinductive types (1.1) and guarded type theory (1.2). Then, in Section 1.3 we give
an account of clocked cubical type theory and show how it realizes these concepts.
Additionally, we

In Section 1.4, we introduce MTT as well as the relevant algorithms that are
needed to implement it. This in particular includes normalization-by-evaluation and
bidirectional type checking.

1.1 Coinduction and partiality

It is well-known that general recursion breaks the Curry-Howard isomorphism, and
thereby well-typed terms do not correspond to proofs anymore. The problem is that
functions in type theories are total, but general recursion allows us to define partial
functions.

In his work Moggi [86] established that effectful computations can be naturally
interpreted in specific monads. A partial function from A to B is thereby viewed as a



6 CHAPTER 1. INTRODUCTION

total function of type A — .# (B), where .# (X) = X + L. Thus, .# is often referred
to as the partiality monad. When interpreting programming languages, L represents
the non-terminating program.

However, in a constructive setting, this is insufficient since we are not able to
decide whether a program terminates or not. As an alternative, Capretta [29] proposed
to use a coinductive partiality monad instead.

In the following, we introduce the concepts of induction and coinduction by
investigating the examples of /ists (as an inductive type) and streams (as a coinductive
type). In its purest form, both induction and coinduction stem from the study of
algebras in mathematics [65].

Induction at the example of lists We denote the collection of lists of type A by
list4. From a computer science perspective, list4 should be freely generated by the
constructors nil and cons(h,t).

In mathematics, this idea is captured by requiring that list4 is an algebra of the
endofunctor Fjist, (X) = 1+ (A x X ). By the definition of Fjs,-algebras, this means
precisely that there are maps

nil : 1 — listy cons(h,t) : A X listg — listy.

The freeness of list4 implies also that it has the familiar induction principle, which
allows us to define functions from list4 to other Fj;s;,-algebras by recursion, as long as
the recursive call is nested under a constructor.

This follows by requiring that list4 is the initial Fjs, (X )-algebra. Indeed, induc-
tion is the universal property of initial algebras, which gives us a unique map to any
other Fj;s, -algebra.

listy --------"--mnnn > (any Fiist,-algebra)

Figure 1.1: Induction is the universal property of initial algebras

It follows from initiality that Fjis, (lista) = list4 and thus lista is a fixpoint (up
to isomorphism) of Fjs,. In general, the initial algebra of an endofunctor F — if it
exists — is the least fixpoint of F'.

Coinduction at the example of streams On the other hand, stream, denotes the set
of streams of type A, which are best thought of as lists of infinite length. While every
finite list is the result of a finite concatenation of constructors, this is not sensible for
infinite lists. Therefore, dually to initial algebras, the primitive operation of streams
are not constructors, but observations: Given a stream s, we can destruct it to its head
hd(s) : A and tail tl(s) : streamg.

Mathematically, this is captured by requiring that streamy4 ought to be a co-algebra
of the functor Fytream, (X) = A x X, which is precisely a map

(hd,tl) : streamp — Fitream, (Streamy). (1.1)
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Being able to observe but not to construct begs the question of how we got our hands
on a stream in the first place. Again, we get a satisfying mathematical answer that
emphasizes the duality with induction: We require streamy to be the final coalgebra,
which gives us a way to synthesize streams by the coinduction principle. Coinduction
is the universal property of final co-algebras, which gives us a unique map from any
other Ftream,-cO-algebras into streamy.

(any Fyream,-co-algebra) -------—=------- > streamy

Figure 1.2: Coinduction is the universal property of final co-algebras

Example 1 (Synthesizing elements of streamy). It follows from the finality of
(hd,tl) : streamy — N X streamy that there exists the morphism ‘zeros’ of Fitream -
co-algebras. Consequently, zeros is an element of streamy.

1 —=°  streamy

),x.(O,x)l l(hd,tl)

idx
N x 1 '““2%° N x streamy

Analogously to the case of initiality, finality implies that streamy is the largest
fixpoint of Fgtream, and in the literature this fixpoint is often named V(Fstream, )-

Note that some elements of coinductive types can be finitely generated. For
instance, the set of co-lists listy is the final co-algebra of Fji;, in the category of sets.
Being the largest fixpoint, listy contains lists of all lengths, the finite and the infinite.

Example 2 (Capretta’s Partiality Monad). We associate to every type A the endofunctor
FL.(X)=A+X. The final co-algebra L(A) of F{ validates L(A) ~ A+ L(A) with maps

n=inl—:A—=A+LA)
step 2 inr—:L(A) = A+L(A)

Furthermore, for any type A we can define a multiplication operation 4 : L(L(A)) —
L(A) which respects the monad equalities. Intuitively, step represents (potentially
unproductive) computation steps of programs, which — if they terminate — compute
to an element of type A. Using coinduction, we can for instance define the infinite,
unproductive loop L : L(A) for any type A. Capretta [29] proves that this monad is
sufficient to interpret recursive functions.

Over the years different variants of types emerged that internalize the concept of
induction [2, 8, 47, 53, 79]. The challenge is to capture the expressive strength of
inductive types while maintaining good meta-theoretic properties — such as canonicity
or normalization — and being convenient to work with. Proof assistants such as
Coq and Agda therefore allow recursive definitions by pattern matching, where the
programmer can define recursive functions by structural recursion on inductive data
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types. This corresponds to the usage of fixpoints in functional programming languages,
and a side effect of this approach is that well-typed terms do not necessarily terminate.
Thus, one has to use a termination checker to ensure that the type theory is sound
[38, 39, 53].

Coinductive types on the other hand can be specified by constructors or as a
record type. Using the coinduction scheme requires extra productivity checks to
guarantee that always new information is produced in finite time (note that the stronger
termination requirement is not sensible for coinductive types) [4, 6, 30].

While this way of declaring coinductive types and functions is very convenient,
there are two downsides for us:

* A priori endofunctors are not guaranteed to have any fixpoints at all. For exam-
ple, F(X) =X — X does not have a (non-trivial) fixpoint in the category of sets.
Schemes for inductive definitions therefore restrict the class of endofunctors to
ensure that variables occur only strictly positively in definitions (see Pfenning
and Paulin-Mohring [93] for a definition of positivity). While this excludes the
aforementioned counterexample, there are also many interesting domain equa-
tions, which do not fall in this class (such as the monad modeling higher-order
store for example).

» Syntactic productivity checks are not compositional and many productive func-
tions cannot be identified. Furthermore, it is difficult to handle higher-order
definitions such as gh = 0 :: h(gh). The productivity of g depends on the be-
havior of / and therefore no verdict can be given without inspecting an explicit
definition for £ first.

These issues are addressed by type-based approaches such as guarded type theories
or sized types [4]. In what follows we thus use a guarded type theory, which in
particular ensures the productivity of terms via typing.

1.2 Guarded Type Theory

Nakano [89] proposed a simple type theory with the "later" modality > to handle
self-refential formulae, including those with negative self-references. The idea is that
the type >A denotes the type of elements of A which are available after one time step.
To it belong a constructor next : A — >A and delayed application — ® — as depicted
in Fig. 1.3. We can then use the guarded fixpoint combinator fix : (>A — A) — A to
get well-defined guarded recursive definitions.

Guarded fixpoints are unique and as such always both the largest and smallest
fixpoint of an endofunctor. To exemplify how the guarded fixpoint combinator is
used, we first introduce the type guarded natural number streams gstry. Without
elaborating why it exists just yet, we note that it is the unique fixpoint of the functor

Fystry (X) £ NxBX (1.2)
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I'Fa:A
'k next(a) : >A next(f) ® next(a) = next(f(a))
(next(Ax.x))(u) = u
Fi—f.bij\l_—};)a»;l—a.DA ((nexto)® fRg)Ra=f®(g®a)
u®next(r) = next(Ag.g(t)) ®u
IHf:bA—A fix(f) = f(next(fix(f)))
TFfix(f) : A

Figure 1.3: Interface of guarded type theory

Recalling the functor Fstream, of Eq. (1.1) we observe that Fgstr,, = Fstreamy ©>. Now

this type has the constructor cons : (N x >gstry) —- gstry which appends a natural
number to a delayed guarded stream. We often write a :: s instead of cons(a,s). There
are furthermore functions head : gstry — N and tail : gstry — >gstry. We can now
define a stream, which is constantly 0.

zeros = fix (A (s : >gstry).0:: 5)

This is well-defined, because the term is well-typed, and not since the argument is
nested under the — :: — constructor. To illustrate this point, consider the function
merge, : gstry — >gstry, — gstr, which merges two guarded A-streams by interleav-
ing them. Note that the second stream can be delayed, as its first element is only
needed for the second element of the resulting stream. We can now define a second
stream of only 0, which composes the previously defined terms.

zeros' = fix (A (s : >gstr).mergey(zeros)(s))

Again, this is well-defined, but since s is not nested under a constructor, a syntactic
guardedness checker would sound the alarm.

The maps next and — ® — turn > into an applicative functor (see Fig. 1.3). They
are very useful for applying the guarded hypothesis. For instance, to define a function
fmap: (A — B) — gstr, — gstrp by guarded recursion we proceed as follows

let G: >((A — B) — gstry — gstrg) — (A — B) — gstr, — gstrp (1.3)
G Fimap fs4 = f(head(sa)) :: (Fimap ® (next(f))) @ (tail(s4)) in (1.4)
fmap 2 fix(G: .4) (1.5)

Crucially, we apply the guarded hypothesis Fmap to the delayed function next(f) and
the tail of the guarded stream s4 under the later modality.
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Semantics of Guarded Type theories In guarded type theory all types are intrinsi-
cally step-indexed, but instead of exposing the step indices directly to us, we interface
with them through the later modality.

Birkedal et al. [23] showed that this guarded type theory extended with dependent
types can be modeled in the topos of trees. The fopos of trees is the category of
presheaves over the first ordinal @ often denoted by Pre(w). Its objects A : Pre(®)
are presheaves A(1) ¢~ A(2) & ..

For example, there exists a presheaf of guarded natural number streams

gstry 2N N2 L N7 ..

Observe that gstry(n) = N”, and thus a stream (a generalized element of the stream
presheaf) s : 1 — gstryy unveils its data step by step.

The authors of [23] observed that such recursive definitions can be written in the
internal language of the topos. Indeed, there exists an endofunctor » together with
a natural transformation next : I' —» I (as depicted in Fig. 1.4), which allows us to
present the presheaf gstry as the unique solution to the recursive domain equation
X ~ Nx » X. In the topos of trees, solutions to guarded recursive domain equations
exist for a large class of endofunctors, namely those that are locally contractive [23].
These definitions also descend into the slice categories and thus extend the internal
dependent type theory of the topos by the later modality .2

»: Pre(w) — Pre(®) A(0) 55— A(1)
(P A)(O) £ l! lnexto Jnextl
(> A)(n+1) £ A(n) 1 — A(0) <

Figure 1.4: The definition of the endofunctor »

Universes Birkedal and Mggelberg [22] have shown that finding solutions to recur-
sive domain equations can be internalized into the type theory. We start by extending
a universe hierarchy (U;, El;) by codes B; : ;41 U; — U; such that

El,([/>\,A) = D,(E|,(A))

However, in what follows we omit universe levels as well as applications of El and
thus do not distinguish between fypes and codes of types.

In this setting, guarded recursive types can be constructed as fixpoints of functions.
For example, gstry can be defined as the following guarded fixpoint

gstry = fix(A(X : >U).N x>X).

ZFor more information about the presheaf semantics of dependent type theory consult e.g. [62]
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In the following, we use universes to define the categories of /-indexed types and
functors on these categories. This allows us to classify a large class of endofunctors
that have guarded fixpoints.

Definition 1.2.1. Given a type I, we let I — U denote the category of I indexed types.
Its objects are the objects of I/ — U and the type of morphisms from X to Y is

X =Y 2I(i:1).X(i) = Y(i)

A functor F : (I - U) — (J — U) is a pair of closed terms (Fy,F;) which define
actions on objects and morphisms, preserving identity and composition. (see [72, 81])

Now Birkedal and Mggelberg [22] showed the following theorem

Theorem 1.2.2. Let F be an I-indexed endofunctor (I — U) — (I — U), then there
exists a guarded recursive type V8(F) satisfying

VE(F) = F(>(next(vVE(F)))),

where next and > are defined pointwise on families X : I — U. Furthermore, V8(F) is
both an initial algebra as well as a final coalgebra for the endofunctor F o> o next.

For instance, the endofunctor Fgtream, Of Section 1.1 can be defined as the 1-
indexed endofunctor.

Fitream, = (Fo,F1) : U — U F(X)2AxX Fi(f)Zidax f

It follows from Theorem 1.2.2 that the guarded recursive type gstry is precisely
Vg (FstreamN)-

Limitations of guarded types While guarded recursion is very useful for con-
structing elements of guarded types, they can be a bit limited in usage. For instance,
it is not possible to define a function nth : gstry — N which returns the n’th el-
ement of a guarded natural number stream. The only thing we can achieve is a
function nth : gstryy — (>)”N. This is because the later modality forces us to always
preserve the number of computation steps. (Note that there cannot be a function
wrong : >>A — DA)

Therefore, Clocked Type Theory proposes a type former Vk.A called clock quantifi-
cation. Intuitively, it allows us to always go in a world where enough observations can
be made. As a consequence, we get for instance that nth : Vx.gstry — N is definable.

1.3 Clocked Cubical Type Theory

The concrete type theory we use is Clocked Cubical Type Theory (CCTT) [72]. It
combines Cubical Type Theory [37] with clocked type theory [80]. Cubical Type
Theory realizes the ideas of homotopy type theory [106] and does so without disrupting
canonicity — the property that ground types do not have exotic elements.
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It is a dependent type theory with an additional primitive type — the path type
Pathaa b, which — following the homotopical intuition — serves as the identity type
of CTT. In cubical type theory, all types carry the structure of n-dimensional cubes
and this is reflected in the syntax, which includes additional values for each type
namely the explicit coercions along paths and explicit homogeneous compositions
which ensure that paths are symmetric and transitive.

Importantly, this structure ensures that isomorphic types are equal (their path type
is inhabited) and therefore cubical type theory validates the univalence axiom [106].
This typal extensionality principle is particularly useful as it also implies function
extensionality. Additionally, CTT also supports a novel scheme of inductive types:
The higher inductive types.

Similarly to ordinary inductive types, higher inductive types can be declared by a
list of constructors and come with an elimination principle that computes if applied
to constructors. However, HITs may include path constructors, which in particular
allows us to write down definitions of propositional truncation as well as effective
quotient types.

Clocked type theory on the other hand is a guarded type theory where every
step-indexed type is parametrized by a clock. Extending the context by a clock is a
novel context formation rule, as is the addition of ticks to a specific clock. Thereby,
types can be simultaneously step-indexed over multiple clocks. More importantly for
us, it adds the type former Vk.A (clock quantification) which can be used to realize
coinductive types.

The combination of these two type theories furthermore validates the very useful
extensionality principle for guarded types [24], which tells us that a delayed path
between two points corresponds to a path between the delayed points.

>X(Pathy a b) ~ Pathyx4 next(a) next(b)

For this work, we do not benefit from the intrinsic structure of CCTT-types per se
and are only interested in derived properties such as the extensionality principles for
function types and the >* type. We furthermore use higher inductive types to define
the finite distribution monad, which is needed to interpret probabilistic choice, as well
as the propositional truncation, which allows us to reason proof irrelevantly in CCTT.

CCTT is implemented in Agda and has already been used in [88].

In what follows, we will give an incomplete presentation of CCTT, only showcas-
ing the features we make use of.

Cubical Type Theory

As discussed previously, the idea of cubical type theory is to equip types with a struc-
ture that ensures that every construction respects paths. Consequently, we consider
terms connected by a path to be equals. In classical homotopy theory, a path is simply
a continuous map from the interval into a topological space.
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Therefore, CTT (and by inheritance CCTT) introduces the cubical interval I.
While I is not a type, there is a judgment I' - r : I saying that r is of the form

rsu=1i0|il|i|l—r|rAs|rVs.

Intuitively, one can think of I being the real interval with endpoints 0 and 1 as well as
the minimum 7 A s and maximum rV s.3

'+ A(i:I).r : Pathy a b denotes a function from I to A where the endpoints are
fixed by ¢[i0/i] = a and ¢[i1 /i] = b. In other words, it denotes a path between a and b.

As discussed before, we consider Path, a b to be the correct notion of intensional
equality in this system and therefore we write a =4 b instead of Pathy a b. If no
confusion arises, we omit the subscript of the equality. Formally, paths validate
beta and eta rules just as functions, but additionally a path p : @ =4 b reduces to the
boundary declared in its type for i0 and i1.

(Ait)r =t[r/i] p=Aip(i) p(i0)=a p(il)=b

The proof of reflexivity is simply the constant function A (i : I).a : a = a. Further-
more, it is easy to prove function extensionality, since if p : I1(a: A).(f(a) = g(a)),
then Ai.Aa.p(a)(i) : f =ri(aa).B &

Following the Leibniz principle, equal terms should be indiscernible. Hence, we
expect that if p : a = b and we have a proof of P(a) for some predicate P, then also
P(b) should be provable. Note, that such a principle (often referred to as transport)
is in the absence of the standard elimination rule of intensional identity types not
admissible (just as the transitivity of equality).

It turns out that both transport and transitivity are special cases of the composition
operation. To formulate it, we need to discuss partial terms first. Cubical type theories
have a special primitive type of propositions, the face lattice IF. Its elements, the face
formulas, are generated by the grammar

o, ¥u=0p|1p|(i=i0)|(i=il)[oAy|oVy

where (i = i0) A (i = il) = Op. We call a term partial if it is defined in a context
extended by a face formula. The notation '+ u : A[@ +— v] means that T Fu: A
extends the partial term v as expressed by I', ¢ - u =v : A. Now the composition
operation states that this extensibility is preserved along paths:

'Ce:F [i:IFA e,i:TFu:A 'k ap: Ali0/i][@ — u[i0/i]]
[+ comp’A [@ — u]ag : A[il/i][@ — ulil/i]]

We can now for instance define transport as

Ii:1IFA I'ta:A[i0/i]
' transp’Aa £ comp’A [Op — —]a: Afil/i]

For further reading on the face lattice and compositions see [37].

3 Actually, we have to require additional coherences to turn I into a de Morgan algebra.
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Higher Inductive Types Higher inductive types (HITs) generalize ordinary in-
ductive types by allowing us to specify higher-dimensional constructors. Phrased
differently, this allows us to inductively define a type together with coherences that we
want to hold. This is very useful, for instance, quotient types become the special case
of O-truncated (or set-truncated) HITs. We use the scheme of Cavallo and Harper
[32] which was generalized by Kristensen et al. [72] to integrate into clocked cubical
type theory. We can declare constructors of higher inductive types by a tuple

(constr, (args;rec_args;largs;Fargs)) where
* constr is the name of the constructor

* args are the non-recursive arguments and rec_args are the recursive arguments
of the constructor

e Tlargs are the interval arguments. To a first approximation, the more interval
variables are included, the higher the dimension of the constructor gets.

i=il—n
Importantly, the terms #p and #; may depend on all recursive and non-recursive
arguments as well as the constructors declared before. Note that in general,
these conditions can be more complicated, but for us this is sufficient.

i=10—t
» Fargs denotes the boundary conditions for paths of the form [ O] .

For a much more in-depth explanation consult Cavallo and Harper [32].

Propositions and Sets Our first example of a HIT is the propositional truncation,
which squashes an arbitrary type to a homotopy propositions (hPropositions). A
homotopy proposition is a type with at most one element. This captures the idea of
proof irrelevance — either a proposition is provable or not, it does not matter how we
prove it.

Definition 1.3.1. Given a type A we write ||A||_; to denote the type defined by the
constructors

s (=1 (A550)

° |spr0p7 ';(a())a] . HAH_I)’(I : ]I)’ l: ll }—}d]

In what follows we will use a more intuitive notation and define HITs as lists of
typed constructors. For the propositional truncation, we get

(A:U)F inductive ||A||_; : U where
[ = 1A= Al
isprop : (ao,a; : ||A||-1) — ao = ai
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Note that the path type ap =|4|_, a1 internalizes functions from I to ||A|[—; with
boundaries i = i0 — ag and i = il — a;. Thus, one can easily recover the correct
constructor declaration from the types.

The elimination principle of ||A||_; lifts a function A — B to a function ||A||—; —
B as long as B is also a proposition.

The propositional truncation allows us to express ordinary logic with operators
in type theory. The empty type 0 and the one element type 1 are already homotopy
propositions and the non-dependent product @ X y is a proposition if ¢ and y are.
We define V(x: A).¢ 2 TI(x : A).¢@(x) which is a proposition if ¢ is. Coproduct types
and dependent sums do not preserve propositions and thus we let @V y = ||@ + y]|
and 3(x: A).0(x) 2 ||Z(n) @1l 1.

We denote the universe of propositions by

Prop; £(¢ : U;) x isProp ¢ where
isProp ¢ £ (x,y: @) = (x=y).

For a thorough introduction to logic in type theory consult Univalent Foundations
Program [106].

Homotopy sets (or short hSets) are types for which all path types (and thus all
higher types) are trivial. There is a similar truncation || — || as for propositions, in
fact there is a corresponding truncation for every h-level.

Finite Distribution Monad For our second paper, we interpret a probabilistic choice
operator using a special type of monad, the convex delay algebras. The construction
uses a monad & for finite distributions. In classical probability theory, the finite
distributions over a set A are defined as maps with finite support i : A — [0, 1] whose
values sum up to 1. This definition can be internalized in type theory as a sum type,
but it is unclear how to define a monad structure without assuming that A has decidable
equality.

Therefore, we represent Z as the free monad for the theory of convex algebras
[66], which is an equivalent definition.

To do so, we first have to discuss the open rational unit interval (0, 1). There
are different approaches on how to internalize such a type. For instance, we could
represent (0, 1) as coprime natural number pairs (n,d) such that n < d. We leave the
details of the implementation implicit but note that however (0, 1) is implemented, we
require the following:

Proposition 1.3.2. (0, 1) is closed under the operations:
e forall p,q:(0,1) we have that pq : (0,1).
e forall p:(0,1) it follows that 1 — p : (0,1).

* (0,1) is closed under convex combinations: For all p,q1,q>: (0,1) we have
that pq1 + (1 —p)g2 : (0,1)
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* Forall p,q: (0,1) we have that - : (0,1).
Multiplication and addition commute, associate and distribute as usual.

Definition 1.3.3 (Convex Algebra). A convex algebra is a set A together with an
operation —@ — : (0,1) =+ A — A — A such that

LOpp=u (idem)
UDpV=VD_pU (comm)
(K1 @p H2) By s =t Dpg (M2 D g 13) (assoc)

A convex algebra homomorphism is a map f : A — B between convex algebras such
that f(u &, v) = f(1) ®p f(V).

Definition 1.3.4. The free convex A-algebra Z(A) can be represented as a HIT by the
following signature (informal presentation):

0:A— P(A)
—@—:(0,1) > 2(A) —> 2(A) — 2(A)
idem :Vp:(0,1). Vu:2(A). (ud,u =)
comm :Vp:(0,1).Vu,v:2(A). (Ud,V=VSi_,U)

assoc : Vp,q. Y, o, 3. ((#l Bp ) Dy 3 = 1 Bpg (M2 D= #3)>
isset : VU, v:Z(A). Veqi,eqr:t = V. (eq1 = eq2)

The final constructor set-truncates the type.

The recursion principle for HITs corresponds precisely to Z(A) being the free
algebra which is why the following proposition is immediate.

Proposition 1.3.5. For every set A and convex algebra B and map f : A — B we
get a unique convex algebra homomorphism f : P(A) — B such that f = fo 0.
Consequently, 2 forms a monad on the category of sets.

It is easy to see how elements of convex algebras represent finite distributions.
Intuitively speaking, 0(a) denotes the Dirac distribution which has all weight on a.
The convex combination d &, d’ is equal to d with probability ¢ and equal to " with
probability 1 —g.

Considering this, it is straightforward to define a function Proba : Z(A) — A —
[0, 1], which computes the probability that a distribution assumes a certain value.

Clocked Type Theory

Clocked Cubical Type theory extends CTT with multiclocked guarded recursion [80].
The > modality is indexed by a clock k. Such clocks are either variables of the pretype
clock or the clock constant kp. Similar to the cubical interval, clock is not a type but
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Contexts :
'+ K:clock¢T K:clockeT oa¢l oa¢Tl
I',x:clock - Ia:xk+ INo: kot
Types :
MNa:xFA Ik :clockFA
I'o(a:k).A I'-vk.A
Terms :

Ft:>(a:k)A OB xT'F
LBk t[B]:AlB/al

Na:xkFt:A
I'cA(a:k).r:>(o: k).A

F'Ft:>A— A I'Ft:>A— A

T dfixs : >*A TF pfix’r : o(et : &). (dfixe[e] = 1(dfix"7))
I k:clock-7:A '~t:Vk.A 't ' : clock
'FAk.f: VKA CHt[x]: Ak /k]

Figure 1.5: Selection of typing rules for CCTT

Akt[K]=t Alo:x).(t]a]) =t
(Ak.t)[K] =[x /x] Ala:x).t) [ =t /o]

Figure 1.6: Beta and Eta rules for modal types

only occurs in a novel context extension rule (Fig. 1.5). Clocks can be quantified
using the type former Vk.A, which implements ideas proposed by Atkey and McBride
[13] to realize coinductive types. The rules are similar to those of Il-types and Vk.A
also validates a functional extensionality principle. Furthermore, it is an applicative
functor as summarized in Fig. 1.7.

f:VkA—B a:VkA VK.a=4b
Ax.f[x](a[x]) : Vx.B AK.a =y 4 AK.D

Figure 1.7: Admissible rules for Vk
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The introduction and elimination of >(¢ : k). are by tick abstraction and appli-
cation, similar to the tick calculus of Bahr et al. [14]. Extending a context by a tick
I', o : k is a context extension rule, that hypothesizes that time has passed on clock k.
In the context I', o : k,I7, the tick o signals that time has passed between the values
represented by the variables in I" and the values represented by variables in I,

It is relatively convenient and intuitive to program using ticks. Consider for
example the following definition:

[+ Zeorn) (>(0: K).B(x[at])) = " (ZeaB(x))
f(x,y) £ Aa:x). (o], y[a)).

We first abstract the tick « : k, and then need to define a term of type X,.4B(x). Since
we have x : >¥A and y : (o : k).B(x[a]) we can simply apply the tick o to each of
them and get the result. Note that the tick application rule in Fig. 1.5 requires that
B (and any other variable listed afterward in the context) does not occur freely in
t:>(a : x).A. This ensures that the number of steps is preserved and we cannot apply
the same tick twice. The following would thus be ill-typed:

wrong : b*>FA — XA

wronga = A(a:k).ala][al.
Along with several rules of standard Martin-L6f type theory, we also omitted many
technical rules governing clocks and ticks. For instance, CCTT allows us to hypothe-

size certain timeless assumptions that are needed to prove the extensionality principle
for ¥

x=ppay>~p>(a:K)x[] =4 y|a] (1.6)

This principle implies that >* preserves h-levels and in particular sets and propositions.
Further rules left out are the simple and forcing tick substitutions. These let us
define the force operator of Atkey and McBride [13].

force : Vk.>¥A — Vk.A (1.7)
Finally, in CCTT we can inhabit the tick irrelevance axiom
tirr® : (x:>FA) = (o k).> (B x).x[a] =4 x[B],
which is needed to prove that Eq. (1.7) is an equivalence of types.

Guarded recursion

The tick rules can be used to implement the next and — ®* — operator from before, to
turn each >(@ : k). into the applicative "later" modality of Fig. 1.3.

next®(a) £ A(a:K).a f@® a=A(a:x).flo](ala))
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In practice, it is more convenient to use ticks directly instead of interfacing with
next and — ® —. As the archetypical ingredient of guarded type theories, we have a
delayed guarded fixpoint constructor dfix and its propositional unfolding rule pfix*
(see Fig. 1.5). We recover the guarded fixpoint combinator of Fig. 1.3 by defining

ChHt:pKA > A
[ fixt = ¢(dfixt) : A

Using the propositional unfolding rule pfix* (see Fig. 1.5), one can prove that
fix®r = r(next™ (fix*r)). (1.8)

Remark 3. Most of the time, we define guarded recursive terms through equations,
which uniquely determine them. For instance, we can redefine the function in Eq. (1.5)
by writing

fmap® fs = f(head®(s)) :: A(a: k).fmap® f (tail*(s) [a])

While this is not the correct application of the guarded fixpoint combinator, once
fmap” is defined, it will satisfy this equality by Eq. (1.8). For this to work, the
recursive call of the function needs to occur under a tick.

Similar to Theorem 1.2.2, for any /-indexed endofunctor F and clock k we get
guarded fixpoints v¥(F) such that

VE(F) ~ F(p"(next®(v¥(F)))).

Guarded Partiality Monad We revisit the partiality monad of Example 2, which
ought to be the final coalgebra of the endofunctor Ff{ : (U — U) - U — U

FL 2 AG.AA.(A+G(A)).

Algebras of the functor Fi o>* o next® are called guarded delay algebras and can be
characterized as follows:

Definition 1.3.6 (Guarded delay algebras). A (x-)delay algebra is a set A together
with a map step® : >¥A — A. A delay algebra homomorphism is amap f:A — B
such that f(step®(a)) = step®(A(a:k).f(a|al)).

Example 4. The universe U; together with ;i? forms a guarded delay algebra. Similarly,
the universe of propositions Prop; and >F form a delay algebra, as >* preserves
propositions.

Let L¥ = v¥(F_) denote the unique guarded fixpoint of F{ . Now Theorem 1.2.2
implies that for any type A : U we have

LK(A) ~ A+ L5(A) (1.9)

The map step¥(a) = inr(a) witnesses that LX(A) is indeed a delay algebra and
n*(a) £ inl(a) embeds A into L¥(A).
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Example 5 (Guarded Loop). For any type A, we define the infinite, unproductive loop
LX:L¥(A) by letting 1* = fix"step®.

Lemma 1.3.7 (Freeness of L¥). For any set A : U the type L¥(A) is the free guarded
delay A-algebra. Thus, for any delay algebra B and map f : A — B there is a unique
lift f : LX(A) — B.

Proof. This proof is a consequence of Theorem 1.2.2, but it is instructive to prove it
by hand.

Suppose f : A — B and (B, stepp) is a delay algebra. We define the lift f: L¥(A) —
B by guarded recursion, and thus it suffices to define a function >*(L*(A) — B) —
L¥(A) — B.

Hence, let g : >*(L*(A) — B) and considering Eq. (1.9) we continue by casing on
A+1>*L¥(A) to define a function L*(A) — B.

f(n*(a)) = f(a)
[f(step™(a)) = stepp(A(a: ).g[at] (a[a]))

For uniqueness we show that any other f-lift & is pointwise equal to f. Then
function extensionality implies the result. We again proceed by guarded recursion and
thus assume p : X(I1(x : LX(A))(h(a) = f(a))). The n¥a-case is immediate since
both /2 and f reduce to f. For any a : >*L¥(A) we get that

Ala:x).pla](ala]) : >*(h(a) = f(a)),
which by Eq. (1.6) is equivalent to
Alo:k).h(ala]) = A(a:k).fla|a]).

Therefore, the step®(a)-case follows since

h(step®a) = stepg(A(at: x).h(ala)))
= step(A(a:k).f(ala]))
— F(step*a)

O]

We often write t >>= f for f(a) where f is the unique extension of f to a delay
algebra homomorphism.

Corollary 1.3.8 (Lifting of Predicates). Since Prop and >* form a delay algebra we
can ungiuely extend predicates Q : A — Prop to L*(Q) : L*(A) — Prop.

Next, we note that L¥ is a functor and lifts morphism f: A — Bto L*(f) : L¥(A) —
L*¥(B) by letting

L*(f) £ n¥o f
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Lemma 1.3.9 (Functoriality of L*). Let f: A — Band g : B— C, then

L*(go f) = L"(g) o L*(f)

Proof. Instead of reiterating the proof by guarded recursion, we simply note that
either function is the unique extension of n*ogo f: A — L*(C). O

Lastly, L* forms a monad with the monad multiplication g4 : L*(L*(A)) — L¥(A)
being the unique delay algebra homomorphism that extends the identity function
id: L¥(A) = L*(A).

Lemma 1.3.10 (Monad laws). L* with unit n* and multiplication u* forms a monad.

Proof. We have to show that for any X : U the maps ty o L*(ttx) and pix o ty «(x) are
equal. This is however immediate, since both functions extend py : L*(L*(X)) —
L*¥(X). Indeed, a simple calculation reveals that

px o (L*(ux)) (n*(x)) = px (" (x)) = px © s (n*(x))
Similarly, it follows that iy o nl’_(K(X) is equal to uy o L*(ny) since either function is

equal to TT)’(( Note that rT)’f is the identity function. O

Guarded Convex Delay Algebra The binary choice operator choice” (M,N) evalu-
ates with probability p to M and with probability 1 — p to N. Consequently, programs
of FPCg evaluate to distributions over values, not just values. Combined with general
recursion, we can program procedures, which furthermore evaluate to distributions
with infinite support, such as the geometric distribution. Consequently, to interpret
FPCg we need more than the partiality monad.

Definition 1.3.11 (Convex Delay Algebra). A set A is a convex delay algebra if it is
both a delay algebra and a convex algebra.

We can define the guarded convex delay algebra as the guarded recursive type
satisfying

D*A ~ 2(A+1>*(D*A)) (1.10)
Proposition 1.3.12. For any set A, D¥A denotes the free convex delay A-algebra.

Using guarded recursion, we can define a process generating a geometric distribu-
tion starting at value .

geo, : N — D*(N) (1.11)
geo,(n) = (6"n) @, step” (A(a: x).geo, (n+1)) (1.12)

This is well-defined since the recursive call occurs under a tick (recall Remark 3). By
construction, it unfolds recursively to

geo, (0) = (6%0) @, step™ (A(a: k).geo, (1))
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= (8%0) @), (step*A(a: k). ((8°1) ), step A (B : k).geos (2)))

The guard >* prevents us from computing the probability of termination. This is why
the correct monad to investigate probabilistic processes is a coinductive convex delay
monad D"A.

Coinductive Types

As discussed in Section 1.1 we set out to define coinductive types, which represent
the greatest fixpoints of endofunctors. This is useful to model infinitary processes.

CCTT realizes coinductive types for endofunctors that commute with clock quan-
tification.

Definition 1.3.13. A functor F' commutes with clock quantification if for all families
X : 1 — U the canonical map

F(Vk.X) = VK.F(X)
is an equivalence

To exemplify this technique, we return to the example of streams. Recall that gstr
is the guarded fixpoint of Fgsiream,, (see Eq. (1.2)), satisfying the guarded domain
equation

gstri ~ N x >Fgstrk.

As discussed in Eq. (1.1), we are however looking for v (Fgtreamy, )- Let us assume for
the moment that Fgstream, commutes with clock quantification. Consequently, we get
that

Vic.gstry =~ V. (N x >¥gstry)
~ N x Vk.(>"gstry)
~ N x Vk.gstry,

where the last step follows from the isomorphism induced by Eq. (1.7). Thus, Vk.gstr{
is a coalgebra of Fsireamy. The fact that it is the final one is a corollary of a more
general property:

Theorem 1.3.14. Let F be an endofunctor which commutes with clock quantification,
and let VX(F) be the guarded recursive type satisfying V¥(F) ~ F (b*(v¥(F))). Then
v(F) £ Vk.v¥(F) has a final F-coalgebra structure.

A proof of this theorem can be found in Mggelberg [81].
Corollary 1.3.15. Vi.gstry is the final coalgebra V(Fytreamy)-

Proof. We have that Fystream,, = Fstreamy ©>* and thus the theorem applies. ]
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For this to be useful, we need a large collection of functors which commute with
clock quantification. To that goal, we first introduce the concept of clock irrelevant

types.

Definition 1.3.16. A type A is clock-irrelevant if the canonical map A — Vk.A (for K
fresh) is an isomorphism.

There is a large class of such clock-irrelevant types which are described in detail
in [72]. It includes in particular the natural numbers N and is closed under various
type formers, such as dependent products and sums, coproducts, clock quantification
and path types. Furthermore, all propositions are clock-irrelevant, since by applying
the clock constant ky we get a map Vk.P — P for all propositions.

The following theorem of Kristensen et al. [72] identifies a large number of
functors which commute with clock quantification.

Theorem 1.3.17. The collection of endofunctors commuting with clock quantification
is closed under composition, pointwise product, pointwise 11, pointwise X, over clock
irrelevant types, and pointwise universal quantification over clocks. If F commutes
with clock quantification then the guarded recursive type X satisfying X ~ F (>¥X) is
clock irrelevant. Any path type of clock irrelevant type is clock irrelevant.

Furthermore, using the notion of induction under clocks Kristensen et al. [72]
established that many functors involving HITs also commute with clock quantification.
In particular, all inductive types are clock irrelevant, but specific higher inductive
types such as the finite powerset monad commute with clock quantification as well
([72]). As we will see in §3, this also holds for the finite distribution monad.

Proposition 1.3.18. The finite distribution monad 9 commutes with clock quantifica-
tion.

Caprettas Partiality Monad Revisited We define L(A) = Vk.LX(A). If A is clock
irrelevant, then Theorem 1.3.14 implies that L(A) is the final coalgebra v(F ) of F,
where F| is the functor of Example 2.
Since L(A) £ A+ L(A) we get maps
n":A—L(A) step” : L(A) — L(A)
n"a=inla step’a = inra

Lemma 1.3.19. L(A) carries a monad structure with unit ° and multiplication
w1’ (d) £ Ax.u*(d[x]), where the Kleisli extension f satisfies f(step’d) = step”(f(d)).

Proof. This is a consequence of Mggelberg and Zwart [85] and the fact that we have
proven L¥ to be a monad. 0

We often write a >>= f for f(a) where f is the Kleisli extension.
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Coinductive Convex Delay Monad Let A be clock irrelevant. As already hinted in
Section 1.3, the correct monad to interpret FPCg-programs with values in A is not the
guarded, but the coinductive solution D'A £ Vk.D¥A to the domain equation induced
by the functor Fp4)(X) = Z(A +X).

D'X ~ 2(X +DX).

DVA exists, since by Proposition 1.3.18 and Theorem 1.3.17 the functor Fp(a) com-
mutes with clock quantification for any clock irrelevant A. Now Theorem 1.3.14 im-
plies that v(Fp(4)) = DYA as required. DY carries a convex algebra structure (87, @),
where 8"x = §(inlx) and @ is just the choice operator of 2. Furthermore, there is a
map step’ : DA — D"A defined by step’x = §(inrx).

Finally, D" is a monad as the following lemma proves.

Lemma 1.3.20. D carries a monad structure with unit 8" and the Kleisli extension
f : D'A — DB of any map f : A — DB satisfies

F(step’x) = step’(f(x)) flue)v)=fu) e, f(v)

Proof. Similar to LA, we first show that D¥A is a family of monads indexed by x.
Now [85, Lemma 16] implies the result. ]

Remark 6. Whenever we write D"A, it is implicitly understood that A is clock irrele-
vant.

Coming back to the geometric distribution of Eq. (1.11), we let geo,, = AK.geoy
denote the geometric process of type N — D"(N), which satisfies

geo,(0) = (870) @, step”(geo,,(1))
(870) @, (stepv((5vl) ®, stepv(geop(2))))

We can now define a map PT,, : D'A — [0, 1] which computes the probability of
termination after n steps. Applied to the geometric distribution we for instance get

PTi(geo,(0)) =p+(1—p)p.
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1.4 Implementing a flexible multimodal proof assistant

In the remainder of this introduction, we introduce the framework for general modal
type theories MTT, which in particular encompasses a guarded type theory with
coinductive types (as an alternative to clocked type theory). We furthermore discuss
the essential ingredients to implement such a type theory.

MTT — a multimode type theory

Strictly speaking MTT is not a type theory, but, if handed a mode theory .#, it turns
into a dependent type theory with a judgmental structure to support modal types. A
mode theory is a strict 2-category that defines which modal types to consider. We
refer to its objects as modes, and its morphisms as modalities.

Intuitively, every mode (m, n,0) has an independent type theory attached to it. We
write I' ¢ : A @m for ‘¢ is of type A at mode m’. The situation is reminiscent of
Kripke worlds, where truth is local to each world.

Modalities (U, v,&) are the 1-cells between modes and the glue between the
(otherwise completely independent) type theories at different modes. The variables
in a context I" can be annotated by a modality, we write x : (1 | A) to mean the
variable x of type A annotated by p. Furthermore, modalities induce a restriction
operation on variables. Such restricted variables can only be used if they are annotated
appropriately.

By demanding that ./ is a 2-category, we ensure that modalities compose and
that there is an identity modality id,, for each mode m. The judgmental structure that
modalities induce ought to respect the structure of the mode theory.

Finally, the 2-cells (a, B) of .# induce ‘natural transformations’ between modali-
ties. This introduces a bunch of novel substitutions, which mediate between modal
contexts. In particular, this allows us to relax the usage of p-annotated variables. We
are free to use a variable x : (i | A) which is restricted by v, if there exists a 2-cell
a:p—v.

We can now easily define a mode theory that extends MTT by a modality with
the structure of e.g. a comonad, a monad, or an adjoint.

Example 7 (Idempotent Comonad). Consider the mode theory .# with a single object
m, a single non-identity morphism y : m — m and a 2-cell € : 4 — id,, subject to the
equations o = 4 and €xu = €. This description defines .# as a 2-category
with a strictly idempotent comonad p. Instantiating MTT with this mode theory
yields a modality (u | —) together with definable operations shaping (i | —) into an
idempotent comonad:

extracty : (i | A) — A dups s (| A) = (u | (| A)

To define extracty we crucially leverage that we can use a u annotated variable
restricted by id,,, since there is a 2-cell € : 4 —id,,. Even this simple modal type
theory is quite useful; it can serve as a replacement for the experimental version of
Agda [109] used to formalize a construction of univalent universes [77].
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MTT includes many other rules, in particular a subtle modal elimination rule,
which deviates from the usual Fitch-style modal type theories. We refer to Gratzer
et al. [58] and [55] for a comprehensive and detailed introduction.

Implementing MTT  Gratzer [54] proved that MTT is normalizing. However,
transforming this theoretic guarantee into an implementable algorithm is no easy task.

Firstly, Gratzer [54] considers MTT to be a fully annotated generalized algebraic
theory. In practice, this requires a programmer to write a lot of redundant annotations.
To minimize the effort, we follow Pierce and Turner [95] who presented a bidirectional
type checking algorithm, building on ideas pioneered by Coquand [40].

Secondly, the authors of [54] use a gluing argument to prove normalization, and
while the proof is constructive and reminiscent of defunctionalized NbE [3], it is
unclear how to extract an algorithm that can be implemented. Therefore, we follow
the algorithm in [3] and implement a defunctionalized normalization-by-evaluation
algorithm. This technique has been used successfully with modal type theories before
[57, 94].

Finally, MTT is parametrized by arbitrary 2-categories and thus the decidability
of type checking hinges on the decidability of the mode theory. Since there cannot be
an algorithm deciding the equality of arbitrary 2-categories, we have to provide these
algorithms together with the mode theory.

Restriction to preordered MTT In what follows we restrict ourselves to a smaller
class of mode theories, namely those which are preordered. A mode theory is pre-
ordered if there is at most one 2-cell between any pair of modalities. This has two
benefits:

1. Our NbE algorithm uses a presentation of variables, which is invariant under
weakening. This property is disrupted by the introduction of 2-cells. Restricting
to a preordered setting allows us to omit 2-cell annotations entirely and thus
recover the weakening-invariant presentation of variables.

2. There is no need to annotate variables with 2-cells in the surface language. This
significantly improves the usability of MTT as a programming language.

While this excludes some modal situations, it includes the important example of a
guarded type theory combined with the everything now modality of Clouston et al.
[36].

Normalization by evaluation

To implement a type checker one has to decide type equality. This is because type
theories include a conversion rule, which says that if ' M : A and '+ A = B then
'+ M : B. Thus, validating a derivation of I - M : B might require an equality check.
For simple type theories, type equality is often trivial, which cannot be said about
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equality in a dependent setting. Here, type and term equality is entangled and deciding
the equality of types is just as hard as deciding the equality of terms.

We approach the problem by singling out a special subset of normal form terms
Nf. This allows us to reduce term equality to equality of normal forms, by defining a
function norm : Tm — Nf which validates the following soundness and completeness
requirement.

* Soundness: I'-norm(M) = M : A for any term I' - M : A.
» Completeness: I' - M = N : A if and only if norm(M) = norm(N).

In our situation, normal form terms are precisely the terms that have no f-redeces
and are 1n-expanded exactly once.

Example 8. The normal form of the $-redex (Ax.x)0 is O.
Example 9. The normal form of a variable x : Nat — Nat, is Ay.xy : Nat — Nat.
Example 10. The normal form of a variable x : (Nat — Nat) — Nat is A f.x(Ay.fy)

Ne denotes the neutral terms, a subclass of the normal forms. They include
variables (de Bruijn Indices) and eliminators which are stuck on variables.

Nf D Ne D Index

Example 11. For any variable x the term x(0) € Ne and thus x(0) is in normal form.

Representing variables While we use ordinary named variables in the surface
syntax of MTT, we switch to de Bruijn indices to represent variables internally. Instead
of naming variables, a de Bruijn index points to its binder, counting from the inside out.
For instance, Ax.x becomes A(qp) and an open term x;:A— B, x2:CF A(y:A).Az.x1y
turns into A— B,C+ A(A(q3(q1))).

Terms represented in this way are for obvious reasons invariant under the renaming
of bound variables. This property is often called o-equivalence and can be annoyingly
pesky if not considered carefully. Note that de Bruijn indices completely sidestep this
problem, as e.g. Ax.x and Ay.y both become A (qq).

During normalization, we also use de Bruijn levels, which differ from indices since
they count from outwards in. Here, the open term x; :A— B,x;:CH A(y:A).Az.x1y
becomes A— B,C + A(A(qo(qz))). Note that if I' - ¢ : A is a de Bruijn level and
I" has length n, then I' - q,,_(441) : A denotes the same variable as a de Bruijn index.
Importantly, levels are invariant under weakening to the right, which allows us to
define an evaluation function without ever having to shift the indices.

Normalization by Evaluation Berger and Schwichtenberg [20] discovered an
algorithm to compute normal forms by first embedding and evaluating a term into
a host language (in this case Scheme), and then quoting the result back to a lambda
expression. Since then, there have been many different iterations of NbE. Abel [3]
gives a great overview of the existing approaches.
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In our situation, we define a partial evaluation function, which sends raw terms to
a domain of semantic values Val. Semantic values are similar to terms, except that
they exclude any term with f3-redeces. Instead, we require semantic operators on the
domain, which enforces that during evaluation all terms are 3-reduced.

Not all B-redeces can be reduced as eliminators can get “stuck” on variables or
other stuck eliminators. Thus, we define a distinguished domain D"¢ of neutrals,
which can be lifted to Val. The lifted semantic neutrals are then the target of the
evaluation function for irreducible f3-redeces.

Extension to n-equality At this point, we could quote neutrals and values back to
terms and they would be in 3-normal form. However, the product and the function
type have n-equality, which is why normal form terms of these types should be
n-expanded.

We first note, that while -reductions can be carried out regardless of the type,
n-expansions are by nature type-directed: It only makes sense to expand M to Ax.Mx
if M is a function.

Thus, we need to reify the semantic values to normals by annotating them with a
semantic value type |4. We furthermore annotate semantic neutrals with a semantic
value type when they are lifted to semantic values by 1. During quotation, the
reification by a type that has n-equality triggers an outer 717-expansion. Similarly, the
lifting of semantic neutrals triggers 711-expansion inside the term.

Note the deliberate choice of annotating values with semantic value types and
not just syntactic types. This is because the type has to be B-reduced. For example,
let A(zero) = Nat — Nat and A(sucn) = Nat. That the term M : A(zero) has to be
n-expanded becomes only apparent after 3-reducing A(zero).

Defunctionalized NbE In the original definition of normalization-by-evaluation,
functions are evaluated to actual meta-level functions. Since the domain of semantic
values is untyped, this necessitates that Val ~ (Val — Val) which gets us into the
domain of domain theory.

It turns out that one can significantly simplify the semantic domains by replacing
the meta-level functions with closures. A closure saves the remaining unevaluated
term and the current semantic environment and suspends the computation until more
information is provided.

Bidirectional type checking

As discussed before, we adapt the approach of Coquand [40] to optimize the usabil-
ity of MTT as a programming language. Thus, we define the following relations
simultaneously by induction

EFEFM<=A@m EFM=A@m
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Here, & - M < A @m means that we can check that M has type A at mode m in
semantic context &. Similarly, £ - M = A @ m means that we can synthesize the type
A at mode m from term M in semantic context =.

The semantic context = organizes the variables currently in scope. These contexts
are more complicated than usual, as they need to store environments to evaluate terms
during type checking. This is needed, as we have to repeatedly check type equality
for the conversion rule.

Modal annotations and restrictions additionally complicate the structure of seman-
tic contexts. Variables are stored with their modal annotations, and restrictions E.{u }
lazily restrict all variables in E by u.

Using this information, we perform the following checks during type checking:

* We keep track of whether a term or type can be used at a specific mode. In par-
ticular, the domain and codomain of modalities must be matched appropriately.

* We check that variables are correctly restricted. To do this, we elaborate the
unique 2-cell between two modalities, interfacing with the functions provided
by the mode theory. The elaboration succeeds if and only if the variable is used
correctly.

1.5 Contributions and Structure

As discussed in the introduction, the contributions of this thesis can be categorized
into two fields: Programming language semantics in guarded type theory and imple-
mentation of a multimodal proof assistant. In this section, I give an overview of the
results of my research and close with a statement of personal contribution.

Programming language semantics in guarded type theory

We use a guarded type theory to define the operational and denotational semantics of
two programming languages — FPC and FPCgy,. By doing so, we provide the first
semantics of FPCg, in a constructive type theory, as previous work relied on classical
logic for giving semantics to probabilistic programs.

Then, we define a logical relation between semantic and syntactic values and prove
that its lifting is compatible with typing rules. This is sufficient to imply contextual
refinement.

Even though FPCg, extends FPC, there are significant conceptual differences in
the approach.

A programming language with recursive types Firstly, we inductively define the
standard small-step and big-step operational semantics for FPC. Then, we introduce
the notion of contextual refinement using the big step semantics and a theory of typed
contexts.
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Equivalently, the big step semantics can be represented by using a guarded and
coinductive evaluator together with a termination relation: If the evaluation eval(M)
terminates to a value V, then M |} V. We define an interpretation function that assumes
values in semantic domains. Importantly, we can prove a soundness theorem, which
relates the denotational semantics with the operational semantics.

Using a relational lifting, we construct a logical relation that implies contextual
refinement.

A probabilistic programming language with recursive types Both the operational
and denotational semantics make use of a novel guarded convex delay monad, which
is defined as the solution to a guarded recursive type equation. It naturally extends
guarded delay monads and provides a similar interface. Thereby, many proofs are
easily adapted.

In contrast to the work on FPC, we do not present small-step and big-step op-
erational semantics by an inductive definition. Instead, we only define a guarded
recursive and a coinductive evaluator. This is partly because the big-step semantics is
more complicated for probabilistic programs, which are not related to values but to
distributions with infinite support. Furthermore, such a semantics is not needed for
the lifting of relations, which instead falls back on probabilistic couplings. Contextual
refinement is then defined in terms of the coinductive evaluator and the probability of
termination, which we can approximate for convex delay algebras.

We develop the basic constructive theory of couplings for convex delay algebras
and use that to define a logical relation, relating denotational and operational semantics.
It then can be shown that this relation implies contextual refinement.

In the end, we demonstrate how to use the semantics to reason about examples
that combine probabilistic choice and recursion.

Conclusion and Future Work We give a constructive definition of operational and
denotational semantics for call-by-value FPC. Additionally, we illustrate the utility of
this approach and define a logical relation that allows us to reason about contextual
refinement. Many techniques of §2 are going to be transferable to languages that
extend FPC.

Furthermore, we develop a notion of (guarded) convex delay algebras and show
how to use it to define and relate operational and denotational semantics for FPCg, in
guarded type theory. There are several paths forward from here.

Firstly, the logical relation in §3 has an undesired asymmetry to it: Consider a
program M that terminates to V with probability 1, but only in the limit. Using our
logical relation, we might be able to prove that M is a contextual refinement of V, but
not the other way around. This is unsatisfying, and the goal is to extend the logical
relation to account for approximate relational reasoning, which would allow us to
prove that constant functions are refinements of their approximations.
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Secondly, the present work can be extended with the account of nondeterminism
in [84]. It would be interesting to compare the resulting model to the recent classically
defined operationally-based logical relation in [7].

Implementing a multimode proof assistant

We contribute the flexible proof assistant mitten, which can be specialized to a wide
range of modal type theories. We have designed normalization and type-checking
algorithms for mitten which are motivated by recent advancements in the metatheory
of MTT [54]. Finally, we construct various classical examples and show how to
instantiate mitten to a mode theory. In particular, we define the mode theory that
combines guarded recursion with the everything now modality, which renders a type
theory with guarded recursive and coinductive types. At the end, we discuss further
directions and related works.

Publications and statement of personal contribution

This thesis includes the following published papers and manuscripts:

* §2 is a technical report which is the result of a collaboration with Rasmus
Mggelberg and Maaike Zwart. I wrote the report alone and worked out all the
proofs. Maaike Zwart proved one lemma of the main theorem and Rasmus
Mggelberg had an advising role, but also made many revisions.

The introduction of the technical report is shortened since many aspects are
already included in the introduction of the thesis.

* §3is a paper currently in submission which was written with Rasmus Mggelberg,
Maaike Zwart, Alejandro Aguirre and Lars Birkedal. Some technical proofs
are only sketched and outsourced to the appendix. I am the first author of the
paper and lead the research. In particular, I proved the soundness theorem, the
compatibility lemmas, the fundamental lemma and the congruence theorem. I
lead the writing of the paper and wrote a large part of it, in particular Section 3.6,
Section 3.8, Section 3.9 and the respective sections in the appendix.

* §4 is a verbatim inclusion of [101]. I am the first author of the paper and
conducted all the research, advised by my coauthors. I lead the writing of
the paper and wrote the majority of it. Daniel Gratzer wrote Section 4.1 and
Section 4.7 and revised and edited all other sections. Lars Birkedal also revised
and edited the submission.

* During my internship at Airbus Cyber security I coauthored the paper "Don’t
Panic! Analysing the Impact of Attacks on the Safety of Flight Management
Systems" [31] It is not part of this thesis.
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Chapter 2

Technical Report: Modeling FPC
in Guarded Type Theory

2.1 Introduction

Call-by-value FPC is a typed A-calculus extended by recursive types. Its denotational
and operational semantics have been extensively studied (e.g. in [100]).

Our goal is to develop operational and denotational semantics of FPC entirely in
guarded type theory. We furthermore define the notions of contextual refinement as
well as contextual equivalence, which is considered the correct notion of equality for
programs. It is in general difficult to prove that programs are contextually equivalent,
and therefore we show the usefulness of our approach by constructing a logical relation
that implies contextual refinement.

This method has been successfully employed before by Paviotti et al. [91] as well
as Mggelberg and Vezzosi [88] for different languages.

This semantics is not exactly a model of FPC, as it distinguishes contextually
equivalent programs that take different numbers of computation steps. However, this
approach is promising for the following reasons:

* The semantics is sound, meaning that denotationally equal terms are contextu-
ally equivalent.

* We expect that this approach can be extended to more effects than partiality,
such as non-determinism or probabilistic choice.

Structure of the technical report

In what follows, we show how to use guarded recursion to prove contextual equiva-
lence (also known as operational equivalence) of call-by-value FPC programs.

* In Section 2.2 we introduce the syntax and type theory of the programming
language FPC. We furthermore specify four operational semantics: A small

35
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2.2

THEORY

step semantics ~, a big step semantics |}, a guarded recursive evaluator eval®
as well as a coinductive evaluator eval.

Additionally, we define a termination relation |}": L(A) — A — Prop which
relates the foral elements of L(A) with elements of type A. We prove a theorem
relating the big step semantics and termination predicate: If M |} V, then also
eval(M) Y V. Finally, we also introduce typed contexts and the notion of
contextual refinement.

In Section 2.3 we define guarded recursive and coinductive denotational seman-
tics as well as interpretation functions. As before, the coinductive interpretation
is directly derived from the guarded recursive one.

In Section 2.3 we relate evaluation and interpretation.
In Section 2.4 we show how to lift relations on values to relations on terms.
In Section 2.5 we define a logical relation and prove structural lemmas. Finally,

we establish that it implies contextual refinement (the main result).

The programming language FPC

We consider the theory FPC which extends a simple type theory with all recursive

types.

As a general convention, we denote type variables with capital letters X,Y,Z

and term variables by x,y, z.

Remark 12. Correctly implementing variables is technical and needs to anticipate
desired structural properties of the theory such as -equivalence. We avoid this topic
and assume a suitable implementation for our requirements exists.

Values are denoted by capital V,W and terms by L, M and N. All of these stand-ins
might be indexed or primed if needed.
We now define inductively sets of pre-types PreTy, pre-terms PreTm and contexts.

(types) o,T == 1|Nat|lo—7|loxt|o+7 | uX.7 X
(values) V,W = x| () |n(m:N)|lamx.M |foldV | (V,W)
inlV |inrV
(terms) LMN = x|{()|n(n:N)|sucM|predN |ifz(L,M,N)
| MN | (M,N) | fstM | sndM | inIM | inrM
| case(L,M,N) | foldM | unfoldM | lam x.M
(contexts) C s= []|CM | MC |lam x.C | sucC | predC |
ifz(M,C,N) | ifz(C,M,N) | ifz(M,N,C)
| foldC | unfoldC | (C,M) | ...
(ev. contexts) E s= []|EM| (lamx.M)E | sucE | ifz(E,M,N)

' predE | inlE | inrE | case(E,M,N) | foldE
' unfoldE | (E,M) | (V,E) | fstE | sndE
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We come back to contexts in Section 2.2, where we present a theory for well-
formed contexts and define contextual refinement. Evaluation contexts are convenient
in the definition of the small-step operational semantics but also occur in Section 2.4
in the lifting of relations.

We can define a decidable predicate ¥ : PreTm — bool which is true if and only
if a term is a value. Formally, ' -V : & is an abbreviation for M : c A ¥ (M).

Furthermore, we define a function free(M) which collects the free variables of a
term.

Substitution on types and terms

The evaluation of terms and types is discussed in Section 2.2. There we define a
Call-by-Value operational semantics for FPC. Crucially, during this process we replace
variables — both type and term variables — with values and types respectively. This
is a purely syntactical operation, which we can define on our pre-syntax. For types,
o[t/X] denotes the capture-free substitution of X by 7. By capture-free, we mean
that bound variables are not substituted, and free variables in T must not be captured
by binders during substitution.

| o[t/X] : PreTy|

Nat[t/X] 2 Nat (0 — o1)[t/X] 2 o[t/X] = o1[t/X] uX.clt/X]£uX.c

uX.o[t/Y] = uX.(o[t/Y]), where X not free in T X[t/X]| 21

For terms on the hand, we write M[§], where § = V) /x2,...,V,,/x, is a finite list
of value variable pairs, to denote the simultaenous and capture-free substitution of
the variables xj,...,x, with V},....V, in M. With free(d) we denote the set of free
variables in Vi, ..., V,, unioned with the set {xi,...x, }. Practically, this just ensures that
x ¢ free(d) is fresh.

M[8]: PreTm
o=- S — 5/,V/x .
x[8] £ undefined AV (M,N)[8] = (M[5],N[5])
x ¢ free(d)

(lam x.M)[8] = lam x.M([§]

x,y ¢ free(9)
(case(L,x.M,y.N))[V /2] £ case(L,x.M[V /7],y.N[V /z])

Remark 13. Note that demanding x ¢ free(§) is not a restriction, since we can simply
rename bound variables to ensure this is the case.
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Type Derivations

FPC has general recursive types uX.7. Thus, unlike in a simple type theory, we cannot
specify well-formed types by grammar. Hence, we define a relation - which tells us
whether a type is well-formed in a given type variable context ®. To avoid delving
too deep into implementation details, we assume that type contexts are finite sets of
type variables. Furthermore, there is an infinite pool of fresh variable names.

Definition 2.2.1 (Type Contexts). We use type variable contexts ® to denote the sets
of type variables X,Y,Z. We write X € O to denote membership. If X is fresh, ©,X
adds X to © and iteratively, for disjoint sets ® and @', the set ®,® denotes their
union.

Thus, for any ® we get the following rules

Xeo OFo OF1 OFo OF7
OFX ® - Nat 0F1 OFoc—r1 OFoxrT
®OFo OF7 0.XkF1
OFo+1 OFuX.t

Figure 2.1: types

Type Theory

Open terms can only be well-typed if a typing context provides meaning to its free
variables.

As for type derivations, we avoid discussing implementation details of contexts
and variables and instead presuppose that I is a finite set and that there is a decidable
relation (x : o) € I. Using this, we may define x € ' £ Jo.(x : 6) € . Note that this
is also decidable since I is finite.

We write I, x: 0 £ TU{x: o} and iteratively I, A £ TUA.

Definition 2.2.2 (Well-formed Context). We define a predicate |- I" to denote that a
typing context I is well-formed
FI Fo x¢T
[ FI,(x:0)

Now we can define the typing relation I' - M : ¢ for FPC.

x:oel’ FT FT neN FT I'M: Nat
I'tx:0o '=(:1 I'-n: Nat ' sucM : Nat
I'=M : Nat I'HL: Nat I'M:o I'EN:o

't pred M : Nat I't+ifz(L,M,N): o
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I'-M:o I't-M:z I'M:o I'EN:7T
'tinlM:o+7 I'tinrM:0+7 I'-(M,N):ox7t
I'tM:ox7t I'tM:ox7t
I'fstM : o I'ksndM: 7T

'L:c0+0 T,x:0)FM:t T,(y:0)FN:t
I't case(L,x.M,y.N): o

I(x:o)FM: 7t 'EFN:o—1 I'-M:o I'-M:tuX.t/X]
'tlamxM:0—7 I'-NM: 7 I'+foldM: uX.t
I'EM:uX.t

' unfoldM : t[uX.7/X]

We may write =M : o for- =M : ©.

Remark 14. A typing relation - is usually defined as an inductive family of propo-
sitions. While the HIT scheme of Cohen et al. [37] supports them, Kristensen et al.
[72] did not consider the indexing of HITs for complexity reasons. They conjecture
the scheme can be extended though. As a temporary solution, however, we consider
the syntax to be fully annotated. Consequently, type checking becomes decidable and
' M : o is a notation for the recursively defined function

(—F —:—): TypingContext — PreTm — PreTy — bool

Definition 2.2.3. We define the sets of all well-formed types, terms and values
respectively.

Ty £ %(oc € PreTy)(F o) TmL 2X(M € PreTm)(THM : 5)
Vall £ 2(V € PreVal)(T+V : 5).
With Tm, and Val,, we denote the special cases where I is the empty context.

For closed value types it is easy to prove the following correspondence by induc-
tion on the typing derivation.

Lemma 2.2.4 (Canonical Form lemma).

Vals, ; > Val; x Val, Val;, . ~ Val; +Val,
Vals_,; ~Z(lam x.M : PreVal)(- Flamx.M : 6 — 1) Valy, @ N
Val,x ; = X(foldM : PreVal)(- - foldM : uX.7) Val; ~ 1

Proof. The proof is a straightforward induction. O
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This lemma justifies that we overload expressions and use the meta-level functions
suc,pred : N — N as well as pr:Val,, . — Val, and pr,:Val,, , — Val; synoni-
mously with FPC value constructors.

suc (n) = suc(n) fstV =prV
pred (n) = pred(n) sndV = pr,V

We also define functions out of Val
such as

o+1> Valg_,; and Val x . by matching on cases,

in|V|—>a1
: Val — A
{ian»—nzz ott

A(lamx.M).a:Vals_, — A A(foldV).a: Val , x ; = A.

uxX.t

This is justified, as all elements of Val;_,; and Val are of the form lam x.M and

fold M respectively.

uXx.t

Substitution Lemma We introduce a notion of well-formed substitution which
preserves well-typedness

Definition 2.2.5 (Well-formed Subsitution). A substitution d : Sub(I';A) is a finite
list of value and variable pairs, which can be defined inductively as follows:
0 : Sub(I';A) I'-v:o x¢A
-2 Sub(T;-) 0,V /x:Sub(T;A, (x: 0))

With §(x) we denote the value that is substituted for x.

There is an obvious identity substitution id : Sub(I";I") for any context I'. We
simply write M[V /x] instead of M[id,V /x]|.

Lemma 2.2.6 (Substitution Lemma). IfA-M : Tand § : Sub(I';A), thenT' = M([d] : T.

Proof. The proof proceeds by induction on derivations.

Case: AFlamxM:0 =7
We have that A,x: 6 - M : tand (8,x/x) : T',x: 6+ A,x: c. Thus, by the induction
hypothesis, we get I',x : 6 = M[8,x/x] : T. This however directly implies that I" -
lamx.(M[8]):0 — 7

Case: AlFx: o
Then (x: o) € A and since § : I' — A, there exist a V, such that V /x € 6. But then
I' =V : o and the claim follows.

Case: AFMN : 7
We have A-M : 6 — 7 and A+ N : ¢ and thus the induction hypothesis gives us
By induction hypothesis we get that '+ M[8]: 6 — 7 and ' N[§] : 6. Thus,
't (M[38])N[d] : T and the claim follows.

The remaining cases are similar O
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Operational Semantics

In Fig. 2.2 we define the small-step operational semantics for this theory by induction
on terms.

(lam x.M)V ~~ M|V /x] sucn ~»n—+1 predn ~» max(0,n—1)

ifz(0,M,N) ~~ M ifz(n+1,M,N) ~> N case(inlV,x.M,y.N) ~> M[V /x]

case(inrV,x.M,y.N) ~ N[V /y] fst(V,W) ~»V snd (V,W) ~» W
M~ N
unfoldfoldV ~~» V E[M] ~~ E[N]

Figure 2.2: Small Step Operational Semantics for FPC

We form the reflexive, transitive closure ~~*

M ~* M My ~ M,
M~*M M ~~* M,

The big step operational semantics is defined in Fig. 2.3.

M=V Mn Min Ly0 MV
M|V sucM | n+1 predM || max(0,n—1) ifz(L,M,N) || V
Lint+l NIV MV MV
ifz(L,M,N) |V inlM |} inlV inftM | inrV

Liinlv  MV/X]4W  LlinnV  NVHIW MUV  NUW
case(L,x.M,y.N) | W case(L,x.M,y.N) | W (M,N) |} (V,W)

M (V,W) M (V,W) MylamxM NV M[V'/x|V

fstM || V sndM | W MN |V
M|V M | foldV
foldM | foldV unfoldM || V

Figure 2.3: big step semantics

The following lemmas prove that the small and big step semantics are compatible.
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Lemma 2.2.7. If M ~ M’ then M ||V <+ M’ |V

Proof. The proof proceeds by induction on M ~» M’. We also need to distinguish all
possible cases for evaluation contexts E.

For instance, let (lam x.M)V ~~ M[V]. If furthermore (lam x.M)V || W, then
by induction on |} we get that M[V /x| | W. If on the other hand, we have that
M|V /x] | W, then clearly (lam x.M)V |} W by the definition of J}.

As another example, let E = [—|N and E[M] ~» E[M']. By definition of ~, we
have that M ~~ M’. Now if MN |} V, it must be the case that M |} lam x.L, N |} W and
L[W /x] |} V. The induction hypothesis implies that M |} lam x.L <+ M’ || lam x.L, and
thus the claim follows

The remaining cases follow similarly. 0

This lemma extends to the transitive closure of the small-step operational seman-
tics.

Corollary 2.2.8. If M ~* M’ then M |V <+ M' |V
Lemma 2.2.9. IfM |V, then M ~~* V.
Proof. The proof is by induction on |} and the fact that ~~* is transitive. O

Remark 15. The big-step semantics as well as the reflexive transitive closure ~~*
are inductive families of propositions, which the higher inductive type scheme in
Kristensen et al. [72] does not include yet. As a temporary solution, we note that both
of these families of types can be encoded by defining a furelled version using induction
on natural numbers. For example, let

§": Tmg — Val, — N — Prop
MPPVvamM=Vv
MN "'V & (M " lam x. M)A (N " VIA MV /x] V)
unfoldM "'V £ M |)" foldV

We can now define M || V & In.M |" V

Evaluation

In Fig. 2.4 we define an evaluator eval® : {c : Ty} — Tm, — L*¥(Val,), which
evaluates a term according to the operational semantics specified in Section 2.2. This
function cannot be defined inductively, as the recursive calls for function application
and coproduct elimination would not be well-founded due to the substitution taking
place. Thus, it is defined by guarded recursion. As such, the recursive calls are
guarded by >*, which is why they must occur under tick like so:

name 2 step®(A(a: k).f(name))
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eval(V)=n
eval®(predM) = L*
eval®(sucM) = L*
eval®(inlM) = L
eval®(inrM) = L

eval®(ifz(L,M,N)) = eval“L >>=F {0 > eval’(M)
n+1— eval*(M)
eval*(fstM) £ (eval*M) >>=" A (V,W).n*V
eval®(snd M) £ (eval*M) >>= A(V,W).n*W
eval“(M,N) = eval*M >>=" AV.
eval*N >>=" AW.n*(V,W)
eval®(case(L,x.M,y.N)) = eval*(L)
- {inIV — step(A(at: k).eval*(M[V /x]))
inrV — step®(A(a: x).eval*(N[V /y]))
eval*(MN) £ eval*(M) >>=" A(lam x.M"). eval*(N)
>>=" AV.step®(A(a : k).eval*(M'[V /x]))
eval®(foldM) £ L*(fold ) (eval*(M))
eval®(unfold M) £ eval*M >>=" A (foldV).step* (A (a: k).n* V)

Figure 2.4: The evaluation function eval*.

We often write eval*M instead of eval®(- - M : 7).

Remark 16. The evaluation of unfold M does not require guarded recursion. However,
it is necessary to add a step® to match the steps of evaluation and interpretation
(defined in Fig. 2.6) for proving that the semantics is operationally sound (Section 2.3).

Example 17. We define

+FY:((c—=1)=>(0—>1)—>0—>7
Y £ lam f.lam z.e/(foldes)z, where
ef(UX.X >0—-1) 201

er = lam y.lety = unfoldy in f(lam x.y'yx)
Here, we have that

Ly:uX.(X - o0—r1)
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2.y (U X.X—>0—-1)—>0—>1
3. lamxyyx:0—1
Then, for any values - - f: (6 — 7) - 0 — tand - - V : o the following is true
« eval((Y£)(V)) = (&%)} (eval “((F(Y£))(V))) where A¥ 2 (step* o next*).
* (YN)V) 7 (f(Azes(foldef)z)) (V)
* (FYV) " (f(Aze(foldef)z)) (V)

Proof. Let
Ey = A(lam x.M).step®(A (o : ).eval*(M[V /x]))
Note that
eval®(Y@) = A*(eval®(lam x.(ep(foldeg) )x))
and

eval®(eq(foldey)) = (A¥)? (eval®(¢(lam x.(ey(foldey)x)))

Therefore,

eval*((Yo)(V))
= (A¥)*(eval®(ey(foldey))V))
= (A¥)(eval*(@(lam x.(ey(foldeg)x)) >>=" Ey)
(A¥)°(8%(9) >>=" A(lam Z.P).eval*(lam x.(eq(fold ey)x))
>>=" AU.A*(eval*(P[U /z]) >>=F Ey))
(AF)* (8% (@) >>=" A(lam Z.P).A* eval*(lam x.(eq (fold e )x))
>>=" AU.A"(eval*(P[U /z]) >>=" Ey))
(A (8% (@) >>=" A(lam Z.P).eval*(Y )
T =" AUAN(eval*(PU /7)) >>=" Ey))
= (M%) (eval*((p(Y9))) >>=" Ey)
= (A)*(eval*((@(Y9))(V)))

The remaining statements follow by directly evaluating the term using the rules of
Fig. 2.2.

AK
AK

O]

Coinductive Evaluator The corresponding evaluator eval : {o : Ty} — Tmg —
L(Val,) which maps terms to the (coinductive) partiality monad can be defined by

eval(M) £ Ak.eval*M.

This is well-defined, since Vx is an applicative functor, and furthermore by Theo-
rem 1.3.17 Tmpo is clock-irrelevant for any I" and ©.
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A termination relation for total computations

Recall that for any clock irrelevant type A, the type L(A) denotes partial elements of
A. We define a relation m ||” a, which intuitively says that a partial element mm : L(A)
is actually fotal and — modulo a finite number of step” — equal to a : A.

Note, that such a predicate would not be well-typed on L¥(A). If step*(d) : L¥(A),
then d : >*L*(A) and therefore the recursive call needs to occur under tick.

For step’(d) : L(A), on the other hand, we have that d : L(A).

T, (m:L(4)), (a:A) - m | a: Prop |

'tm{"a
L (a:A)Fn'(a) " a I+ step’(m) " a

Remark 18. This relation is an inductive family of propositions and can be encoded
similarly to the big step operational semantics (Remark 15).

As our first application of the termination predicate, consider the partial evaluation
of a term eval(M) : L(Val,), which — if M |} V — should compute to a value V
(potentially nested under a finite number of steps step’). And indeed, in Lemma 2.2.12
we show that if M || V, then also eval(M) ||" V .

Lemma 2.2.10 (Bind Lemma). Let m: L(A) and f: A — L(B). Then m ||" a and
fall” b imply that (m >>= f) |V b

Proof. We proceed by induction on m |7 a.
Case: "(a) ||V a
Then by defintion (m >>= f) ¥ b = fa }” b and thus there is nothing to show.
Case: step”(m) ||" a
We have that step”(m) ||” a = m || a and thus we can apply the induction hypothesis
and get that m >>= f |} b. We now have that

(m>>= f) 1" b= (step”(m >>= f)) |" b

= ((stepvm) >>= f) Wb
and thus the claim follows. O
Corollary 2.2.11. Let m: L(A) and f : A — B. Then m |}” a implies L(f)(m) |}” f(a)

Proof. We have that 7o f : A — L(B) and by definition n7(f(a)) ||" f(a) is true.
Now the Lemma 2.2.10 implies that m >>= n"o f |V f(a) which is by definition

L(f)(m) 47 f(a). O
Lemma 2.2.12. For any well-typed closed term - = M : ¢ we have that

MV —eval(M) |7V
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Proof. We proceed by inductionon M || V.
Case: case(L,x.M,y.N) | V
There are two subcases to consider:

1. L{inl(W)and M[W /x| | V
2. Lyinr(W)and N[W /x] | V.

Case: L inlW and M[W /x] | V
By induction hypothesis it follows that eval(L) |}¥ inl (W) and eval(M[W /x]) |}" V.
Furthermore, unfolding the definition of eval gives

inlW' i step”(eval(M[W' /x]))

eval(case(L,x.M,y.N)) = eval(L) >>= {ian’ s step’(eval (VW' /3])

Note that eval(case(inlW’,x.M,y.N)) = step”(eval(M[W'/x])) and therefore we can
use Lemma 2.2.10 to show eval(case(L,x.M,y.N)) |7 V.

We apply it to eval(L) || inl (W) and A (inlW’).step’(eval(M[W'/x])). To do so,
it remains to be shown that step”(eval(M[W’/x])) |.¥ V, which is however immediate
since eval(M[W’/x]) ||” V by the inductive hypothesis.

Case: L intW and N[W /x] | V
This case is completely analogous.

Case: MN || V
By definition we have that M || lam x.M’, N |l W and M'[W /x] || V. After applying
the induction hypothesis we get

1. eval(M) |7 lam x.M’
2. eval(N) |¥ W
3. eval(M'[W/x]) |7V
We have that eval(MN) is equal to
eval(M) >>= <7L(Iam x.M').eval(N) >>= xw.stepv(evm(M'[W/x])))
and thus we have to apply Lemma 2.2.10 for
A(lam x.M").eval(N) >>= AW.step(eval(M'[W /x])).

To do this, we need to check that eval(M) ||” lam x.M’ — which follows from the
induction hypothesis — and that

eval(N) >>= AW.step”(eval(M'[W /x])) |}7 V.

For the latter we apply Lemma 2.2.10 to the function AW.step”(eval(M'[W /x])): This
is possible, since by the induction hypothesis both eval(N) |}" W and eval(M'[W /x]) |}
V are true and the claim follows.
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Case: unfoldM || V
By induction hypothesis we have that eval(M) |}” fold V. We have that

eval(unfoldM) = (evaI(M) >>= A(fold V).stepv(nv(V))>

and thus to show that unfold M |” V, we use Lemma 2.2.10 for the function
A(foldV).step”(n"(V)).

It thus suffices to show that step’(n"(V)) |” V. This follows from the fact that
step’(n"(V)) 4"V =n"(V) 47 V.
Case: fold M |} fold V By induction hypothesis we get that eval(M) |}” V and since

eval(foldM) = L(fold )(eval(M))

we use Corollary 2.2.11 for the function fold : Val ;x5 /x) = Valx - It thus suffices

to show that eval(M) ||” V, which follows from the induction hypothesis.
The remaining cases are similar. O

Typed Contexts

While the operational semantics induces an equational theory on closed terms, this
approach comes with two restrictions:

1. We can only reason about closed terms

2. The equality is sometimes too intensional. For instance, lambdas are only equal
if they are syntactically equal. This leaves no room for optimizations.

The notion of contextual (also observational) equivalence remedies both issues: Two
programs M and N are contextually equivalent, if for any closing context (Fig. 2.5)
C[—] of natural number type, the terms C[M] and C[N] have the same operational
behavior.

Here we only consider termination to a natural number value as observational
behavior. This is not a restriction, we could have also chosen 1 or other ground types
— the resulting notions of contextual equivalence are the same.

For this to give the correct notion of equality, we have to restrict our context to
those, that preserve well-typedness. In Fig. 2.5 we give the typing rules for contexts.

We can now make precise what it means for programs to be contextual refinements.

Definition 2.2.13 (Contextual Refinement). A term M : ng is a contextual refine-
ment of N : TmL if for any C: (T ¢) = (- - Nat) we have that

CMyn—CINl{n

We write M <cx N to denote that M contextually refines N.
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I'-o C:T'+o0)= (AF Nat)
[-]:TFo)=(I'to) suc(C): (I'- o) = (AF Nat)

C:(T'F o) = (Al Nat)
pred (C) : ('~ o) = (AF Nat)

I'N:t TI'FM:t C:(T'ko)= (AF Nat)
if2(C,M,N): (CF o) = (Al 1)

I'L:Nat T'EN:t  C:(Tho)=(AF7T)
ifz(L,C,N): (T'F0)= (AF 1)

I'FL:Nat T'FM:t C:Tho)=(AFT)
if2(L,M,C): (T+ o) = (AF 1)

C:Tko)=(AF1) ART C:Tko)=(AF1) ART
inl(C):(C'+-o)= (AF1+17) inr(C): (C'+o)= (AT +71)

Ax:o)FM:t A(y:om)FN:t C:TFo)=(AFo+0)
case(C,x.M,y.N): T+ o) = (AF 1)

A(y:om)FEN:1T AFL:o1+ 0 C:Trto)=(A,(x:01)F 1)
case(L,x.C,y.N): ('t o) = (AF 1)

A(x:o)FM:1 AFL:o1+ 0 C:TrFo)=(A,(y:0,) 1)
case(L,x.M,y.C): (TFo)= (A+ 1)

C:Tro)=(AFT) AFM:7 C:Tro)=(AFT) AFM:z
(C,M):(Tko)= (AFTxT) M,C):(TFo)= (AF1Tx1)
C:Trho)= (AF1Tx7) C:Tko)=(AFTx1)
fstC:(IT'Fo)= (A1) sndC: (Tko)= (AFT)

C:Tro)=(Ax:1 k1) C:Trto)=(ArFt—=1) AFM:z
lamx.C:(TFo)= (AF 1 — 1) CM:(T'ko)= (AFT)

AFM:t—17  C:(Tho)=(Ak71) C:(I'+to)= (AFt[uX.7/X])
MC:(Tko)= (AFT) foldC: (I'+0) = (AF uX.7)

C:T'ro)=(AFuX.7)
unfoldC: (TF o) = (A+ t[uX.7/X])

Figure 2.5: Typed Context derivations
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2.3 Denotational Semantics

The outline of this section is the following: We are first going to define semantic
domains and an interpretation function by guarded recursion. As before, by using
clock quantification we also get a collection of coinductive domains and interpretation
functions therein. Then, we relate operational with denotational semantics. To do so,
we prove three soundness theorems:

1. Theorem 2.3.6 relates the guarded evaluator to the guarded interpretation func-
tion.

2. Theorem 2.3.8 relates the coinductive evaluator to the coinductive interpretation
function.

3. In Theorem 2.3.9 we prove that terminating programs evaluate to total elements
in the coinductive domain (in the sense of the termination predicate).

We start by defining the semantic value domains [—]* : Ty. — U. To do so we use
guarded recursion and induction on type derivations (Fig. 2.1).

Definition 2.3.1 (Semantic Values). We define the following by guarded recursion
and induction on type derivations.

[o+7]* £ [o]* +[<]* [o x 7]* £ [o]* x []*
[o — 7]* £ [o]* — L*([7]¥) [Nat]* £ N
[uXx.7]* £ o(o: ). [r[uX.t/X]]* [c&1

Using the partiality monad, semantic terms are then interpreted as lifted semantic
values. Note, that by using guarded recursion, one can avoid defining an interpretation
for open types.

The interpretation of open terms can only be meaningful if every variable is
assigned a specific semantic value. This information is managed by semantic en-
vironments. What data is pushed into semantic environments is determined by the
evaluation strategy — in our case CBV. Semantic environments are similar to sub-
stitutions and how they are realized is an implementation detail, closely tied to the
implementation of variables and contexts.

Here, we represent them as partial functions from the set of all variables to the set
of semantic values. We define semantic environments inductively by the following
rules

p:[C]* v:[o]* x¢T
K plx—v]:[[x:o]"

Instead of p[x — v] we write p.v, if no ambiguity arises from that. Given p : [[']*, we
can look up the value for a variable (x,0) € I in the following way

p(x): [o]*

plr—=vl(x) =v ply—=v(x) =p(x)
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Remark 19 (Permutation of environments). Just as for substitutions or contexts,
handling permutations and weakenings of environments is another implementation
detail, which we do not discuss in this paper. Thus, we simply note that looking up
the entry for x in the environment p is invariant under permutation:

(b= vy = w(x) = ([y = wllx = v]) (%)

Therefore, everything that follows inherits this invariance.

Interpretation function In Fig. 2.6 we define two interpretation functions

[=]V2"* : vall — [T — [o]*
[15 : Tmg — [T — L*([o]")

which interpret values and terms respectively. The interpretation of terms is defined
by induction on term derivations, but most of the time we write simply [M ]]g instead
of [[-M: o]5.

In the case of function application, we use the notation

d-e=d>>="Lf.e >>=" Av.step(La.fe)

Note that this introduces a step, similar to the coproduct elimination and unfolding of
terms of the recursive type. For function application and coproduct elimination, the
steps are not necessary. They are used to align the steps with the evaluator, which is
needed to prove Theorem 2.3.6.

We proceed to define the value and term interpretation functions in Fig. 2.6.

Example 20. Recall the fixed point operator Y from Example 17. We can furthermore
show that

[Yfx]E,, = (step o next®)* ([f(Y£)x]%,,) (2.1)

for any value f and semantic value v.

Proof. Note that f is a value by assumption and Y as well as e are values by definition.
Let p £ x — v, and write A for step” o nextX.

[Y(f)xlp
= ([YIp - [f1p) - [xlp
= ((&%)[1am z.e(fold (e))el} ) - x5
= (AK)Z ([[(ef(fdd (ef)))z]];7ZH[[x]]>)/a|.x>

— (4%)? ([ey (fold (e))]5 - 1)
= (4 ((Ie/T5 - Trold ()15 ) - 415 )
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Interpretation of values

[[ ]]Va|K'é

01y 2«

[[ ]]Val KA )

[[Iame]] ’ él(V' [o]®).[T, (x:0) - M : 1],
[KV W)ﬂval KA ([[V]]Val K [[W]]Val K‘)

[[In|V]]V3| KA inl [[V]]Val K

[[Ian]]VQl K A inr [[V]]Val K

[fold V]p2"* £ next*[V]y>"*

Interpretation of terms

[0T5 = n"(x)

[u] 5 = n*(n)
[sucM]y = £ L*(suc) ([[F FM: Nat]]E)
[pred M] 5 £ L* (pred) ([[FF—M: Nat]]E)

| caie o]0 = [M]5
[ifz(2,M,N)]p = [L]p >>= {n+1 — [[N]]g

llam xM]5 2 n* (A(v: [o]3*).IMI5....,)

[MN]S 2 [MI5 - [N]S
[(M,N)]S 2 [M]S >>=" Av. ([[N]]g S>>k lw.(v,w))
(115)
[snd M]5 2 L¥(pr,) (IMI})
fini M5 = L*(in1) ([M]5)
[inrM]5 2 L*(inr) ([M]5)

[fstM]5 & L (pr)
)

inlv — step*(Ao.[M]5 ..,

case(L,x.M,y.N)]5 £ [L]§ >>="
[case( y-N)lp = [L]p {inrvHstePK(la'[[Nﬂg.va)

[[foIdM]]g = LK(nextK)([[M]]g)
[unfold M] 5 £ [M]§ >>=" Av.step*(Aa.n*(v[et]))

Figure 2.6: Interpretation of FPC.



CHAPTER 2. TECHNICAL REPORT: MODELING FPC IN GUARDED TYPE

52 THEORY
_ vy ([[let y' = unfold (foldey) in f(lam x.(y/ (foldef))x)] ’;)
18K

) ( flam y'.f(1am x.(y (fold ) x)] - [unfold (fold )5 )

5
= (0 (@[ (tamx. 0 (Flde DIE |, 1 v ) - [+15)
= (%) (@92 (1715 - Dam x.(e (fold )15 ) ) - I )
= (@9 ((A%(Is15- YOOI ) - [15)
= @ (Lrevennds) -Ip)
= (a7 (LAY () D)

Since eval*(YfV) = (step¥ o next®)*(eval®(f(Y f)V)) for any values f and V,
we also get

[YSV]* = (step® onext)* ([F(Y/)V]¥)
by Theorem 2.3.6 and Example 17. 0

Lemma 2.3.2. For any value I' =V : ¢ and environment p : [I']* it is the case that
V15 =n*(IVIy™)

Proof. We need to make a case analysis on all value constructors. All cases are
immediate since both >>= and L*(f) reduce for values. O

In particular, for all values - -V : ¢ x 7 and - - n : Nat we have

[[fStVﬂval K = pr, [[V]]Val K [[snd V]]Val K = pr, [[V]]Val K

[[SUC EHVBLK — SuC[[ﬂﬂval’K [[pred ﬂ]]Val,lc — pred[[@]]va""

Furthermore, the following properties are an immediate consequence of the uniqueness
properties of coproduct elimination.

Lemma 2.3.3. For any meta-level type A and terms a,b : A we we have

0 —a 0 —a Val k
= =]V : Valy,, — A
{n+1 b ({n+1 »—>b>OH Nat

Lemma 2.3.4. For functions f : [0]* — A and g : [t]* — A we have

{imv = F(IVIVe) ({inlv — f

inrV = g([v]Vah®) inrv —g

> of[-]V*:valy,, — A
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Substitution Lemma

Lemma 2.3.5 (Substitution Lemma). For any well-typed termT.(x : 6) =M : T as
well as every well typed value I' -V : ¢ we have

[CEM[V/x]:1]5=[C.(x:0)-M: T]];_[mv:c]xau,x
Proof. We proceed by induction on term derivations.
Case: M =x
Then

[CExV/x]: 7],
=[CF-V:1]y

— . . K
= [[F’ (.X . G) Fx: T]]p.[n—VZO'}]\p/aI’K
Case: M = lam x.M’
Recall that we may permutate the environment as mentioned in Remark 19. Further-
more, assume without loss of generality that y # x. Otherwise, use an ¢-equivalent
term where this condition is true (as discussed in Section 2.2). Consequently, we have
that

[CHlamx.M'[V/y]: 11 — w5
= n*([lam x.(M'[V /y])]p*")
=0 (A(t: [o]).[0,x: 7 F MV /Y] w5,

— kK . K . . /. K
=7 (l(t o] 0x:t,y:0 M : 172]]p_[xﬁt}_[w[[v]\p,aw])

— mk . K . . /. K
=0 (A [o] )Ty o Ml v )

=n*([C,y:ck1I M 1 — ]V
n ([[ Y amx 1 ZHP.IIV]D)/BLK

=[[,y:oFlamxM : 7 — ]"

pIVI""
Case: M = MN
We have that
[MN[V /x]]
= MV /Al - [NV /2]
= I gy INDG gy
= [N gy

Case: M = fold M’
We have that

[CFfoldM'[V /x] : pX.tlg
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— L¥(next") ([[r - MV /A r[ux.r/x]]]g)

= L5 (next®) ([T 0 M wluX /X% )

. . /. K
=[,x:0t foldM': “X'Tﬂp.[[v]]xa""

Case: M = unfold M’
We have
[T+ unfoldM'[V /x] : tluX.T/X]]5
=k M’[V/x} : ,uX.T]]E >>=" Av.step(Aa.n*(v[a]))

=[C,x:oF-M: ,LLX.T]]; Ve >>=" Av.step"(Ao.n*(v[at]))
: P

= [[,x: 0o+ unfoldM’ : T[/.LX.‘C/X]]];‘[[V]]XE.LK

We leave the remaining cases to the reader. O

Guarded soundness

The first of three soundness theorems relates the guarded evaluator with the guarded
interpretation function.It relies on the fact that we synchronized the steps for these
functions. The proof is technical, but many equalities are consequences of the monadic
structure of L* and the fact that it is a delay algebra. These imply that >>=¥, step”®
and L*(f) commute in many different ways.

Theorem 2.3.6 (Guarded soundness theorem). For any well typed closed expression
-+ M : o we have that

L*([-]Y2"%) (eval*M) = [M]*
Proof. First, assume the guarded hypothesis
B0 K). (VM : Tmg. L([=]V2"%) (eval*M) = [M] K) .

We proceed with case analysis of term derivations. Case: M =V The value cases are
all the same:

LS (1) (eval) = L[] ) (V)
= (V1)
=[v]*
Case: M = sucM’

LE([-]V2" ) (eval®(sucM’)) = L¥([-]V2"¥) (L*suc(eval*M"))
= L*([suc(—)]V2"*) (eval*M’)
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L¥ (suc([~]V2"*)) (eval*M")
L¥(suc) (LK([[—ﬂva"K)(evaIKM’)>
= L*(suc) ([M'])

= [sucM']*

Case: M = pred M’

“(pred) ([M']")
= [predM']*

Case: M = ifz(L,M’,N) Recall Lemma 2.3.3. It implies that

{O — LK'([[_HVaLK) (evaIK(M’)

) 0 [M]*
n+ 1 LE([=]Y2%) (eval (V)

= An.match [n] V"% with
n+1— [N]*

Consequently, we get that

LR (1Y) (eval* (if2(L, M', N)))
— L5([-]¥*'%) <evaIKL >>=K {OH 2val" (M) )

n+ 1+ eval(N)
[0 LT el o)
= (eval L>>= {’1_'_1’_)LK([[_HV3|7K)(eva|K(N)) )
= eval®L >>=F {0 ~ M1

nt1e [N]*
OH[[M/HK
n+1 [N]*
()’_> [[M/]]K
n+1 [N]*

= eval¥L >>=X An.match [n]V?"* with {

= (L"([[—]]Va'f’“)(eval"L)> >>=F {
=[ifz(L,M',N)]*
Case: M = (M',N)

L*([-]Y2") (eval*(M',N))
= L¥([=]V2"%) (eval*M’ >>=" AV.(eval*N >>=" AW.n*((V,W))))
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— eval* M’ >>=* V. (eval*N >>=* AW.L*([-]"*) (n*((V,W))))

= eval*M' >>=" AV.eval*N >>=X AW.n*([(V,W)]V2"¥)
= eval*M' >>=" AV.eval*N >>=K AW.n*(([V]V2"¥, [W]V2"¥))
(L5 ([=]Y2") (eval*M’)) >>=FAv. (L¥([=]*") (eval*N))
>>=F Aw.n"((v,w))
= [M']* >>=" Av.[N]* >>=" Aw.n"((v,w))
= [(M',N)[*
Case: M = fstM'

—]V2"%) (eval*(fstM'))
_]]Val,l() (LK( )(evaIKM’))
)]]Val k‘) (evalkM)

(-
pro) (LE([-1V2"%) (eval*a'))
)

Case: M = snd M’
L ([—]V2"%)(eval® (snd M"))
LE([-]Y2"%) (L*(m) (eval*M'))
=LY([m (—)]]V3"K) (evaIKM’)
— Lx(pr2 ( ]]VaIK evaIKM')>

=L"(pro) ([M]] )
= [sndM']¥

Case: M = MN We write A* for step® o next®. We start by unfolding the definition
of (eval*MN) >>=F n¥ o [-]V2"* and use associativity as well as the definition of
>>=K to get

(eval*M >>=" (A (lam x.M").eval*N >>="
AV. (A (eval*(M'[V /]))))) >>=" n* o [-]V2*

eval*M >>="2A(lam x.M").eval*N

N < >>=FAV.(A* (eval*(M'[V /x])) >>="n*0 [[_]]Va'»'f)>
eval*M >>="2A(lam x.M").eval*N

N ( >>=F LV.A¥ (evaIK(M’[V/x]) >>="n*o [[]]Va'v">)

eval*M >>="A(lam x.M').eval*N
S>= AV, (step* (Aet.[M'[V /a]]%)
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In the last step, we applied the guarded hypothesis. Next, we use the substitution
lemma for terms, which leaves us with
— eval*M >>=F (x(lam x.M').eval*N >>=% AW.(A%([ M/]]fw]]vg.,,()))
eval*M >>="(A(lam x.M’).eval*N
- ( >>=F AW.(A*([lam x.M’Hva"K(ﬂWﬂva"K))))>
= eval"M >>=F (xv.evamv S>=K AW. (AK([[Vﬂva"K([[Wﬂva"K)))>

In the last equation, we simply omitted the case analysis of function values (as we do
not refer to the body of the function). We now use the functoriality of L* to get

= (L*([-]Y2"%) (eval*M)) >>=" (Av.(L¥([-]V2"¥)(eval*N))
>>="Aw.A*(vw))

which by the induction hypothesis gives
= [M]* >>=" (Av.[N]* >>=" Aw.step*(A (ot : k).vw))
= [M]*-[N]*
= [MN]*
Case: M = inlM’

LX([—]Va4%) (evaIK(inIM’))
= L*([-]Vva%) (L*(in) (eval*M"))
“([int (=)]V2"*) (eval*M’)
“(int) (L([-1"2"*) (eval*M') )
*(inl) ([[M’]] )
= [inlM']*

Case: M = inrM’
The case is completely analogous to the previous case.

Case: M = case(L,x.M,y.N)

We proceed similarly to the function application case and first unfold the definition of
L*([—]V2"%) (eval*case(L,x.M,y.N))

L) (evam - {i”'v - (Aol (MY /) )
inrV — (A¥eval®(N[V /x]))
e fintv s L1V (A% (eval® (M[V /x]))
= evalil>>= {ianr—>L"([[ JV21%) (A% (eval* (N[V /x])))
B B x inlV — AR (L ([—]Va%) (eval*(M[V /x])))
= evallL>>= {ianHAK(LK( —]valxy (evaIK(N[V/x])))
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inlV s (AK[M[V /x]]¥)
inrV > (AS[N[V /2]])

We now apply the substitution lemma and use Lemma 2.3.4. Finally, we apply the
functoriality of L¥([—]V2"¥) and get the result.

= eval*L >>=F { J
|

inl V = AK([[M:I] Ev]]Val.K)

=eval*L >>="{
inrV — AK([[N]]E‘/]VaLK)

inlv — (AX[M]F)
inrv — (A¥[N]X)
inlv — A*([M]F)
inrv — A*([N]¥)

= eval¥L >>=" AV.match [V]V3"¥ with {

= (LY(-1"")(evalL)) >>—'<{

e e Jinly = AR ([M]E)
= [L]* >> {inrvHAK([[N]]VK)
= [case(L,x.M,y.N)]*

Case: M = fold M’

(LE(I-1Y2"%) ) (eval* (fold M"))
(LE(I-1v2"%) (L¥ (fold)) (eval*(11')) )
— (L¥([fold ")) (eval*(M"))

(L (next* o [~]V2'%) ) (eval* (b1"))
L¥(next)) (L¥([]V*"%) (eval* (M) )
L (next®)) ([M']¥)

Case: M = unfold M’
Note that for V' : Valr[ux.r/x] we have that

(o). (([fold V']¥2) o] = [V/]¥2'*)
and thus we get
L*([~]V2"¥) (eval* (unfold M"))
= L*([-]v") (eval (M') >>=" A(foldV').A¥(n*(V")))
E evaIK(M) (foIdV’).LK([[—]]VE’"K)(AK(T]K(V’)))
= eval®(M’) >>=" A(fold V’).L"([[—]]VE""K)(A"(n"([[v’]]va'v’f)))
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= eval(M') >>=" A(foldV").(step™ (A (a: k).(n ([V']V**))))
= eval¥(M') >>=% A(fold V').(step* (A (a: k).(n " ([fold V'[V2"¥ [a]))))

The case analysis of the constructor fold V' is now superfluous, and thus we get

= eval*(M') >>=" AV.(step* (A (a: k).(n*([V]V*"* [a]))))

= eval*(M') >>=" (Av.step"(A(er: K).n"(v[a]))) o [-]V*"*
= (LN (eval (M) 5= Av.step® (A(ac: )75 (v [a])
= [unfoldM']*

Coinductive Semantics

As a first observation in this section, we note that [—]* and L¥[—]* are the guarded
recursive fixpoints of the mutually defined Ty-indexed endofunctors F and G.

F(P,Nat) =N
F(P,c xt) 2 F(P,c) xF(P,7)
: G(Q,0) = F(P,0) +Q(0)
F(P,c — 1) £ F(P,c) = G(Q,1)
F(P,uX.7) £ P(t[uX.7/X])

Lemma 2.3.7. We have that v¥(F) = [—]* and v¥(G) = L*([-]¥).

Proof. We proceed by guarded recursion, to that goal assume that >*(v*(F) = [—]¥)
as well as >*(V¥(G) = L*([-]¥))-

It suffices now to prove that v*(F)(o) = [o]* for all o : Ty, and thus we proceed
by induction on ©.

If c =01 — 7, then

VE(F) (o) = F(>"(VvE(F)),01) = G(>"(v¥(G)),T)

‘ — F(DK(VK(F)) ) >*(vE(G))(7))

o1) = (VE(F)(1) +>"(v5(G))(7))

= [o1]* = ([z]* +>*(L" T]]K)) by guarded and inductive hypothesis
= [o1]* — L*[7]*

—
=
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— o ¥([euX.7/X]])
= [uXx.7]"

The remaining cases and the fact that v®(G) = L*([—]*) follow similarly. O

Following Theorem 1.3.17, F and G commute with clock quantification and
therefore Theorem 1.3.14 implies that they have a coinductive solution as well. We
denote with [—] £ Vk.[—]* and Vk.L¥([—]*) the coinductive solutions for F and G
respectively.

Note that if [c]* is clock irrelevant, then we get that Vk.L*([c]*) ~ L([o]). In
particular, we have that Vk.L*([Nat]*) ~ L([Nat]).

Since clock quantification is an applicative functor and both VaI(F)_ and ng are
clock-irrelevant, we inherit the interpretation functions [—]¥2': Vall, — Vi .[[]¥ —
[o] as well as [—]_ : TmL — Vi.[I]* — Vk.L¥([o]¥) by letting:

[VIy" & Ak [V
[M]p 2 Ak.[MI5

Now, it is easy to prove the following soundness theorem.

Theorem 2.3.8 (Coinductive Soundness Theorem). For -+ M : 6 we have that
(A.L*([-1¥"5)) (eval (M) = [M]

Proof. Tt follows from Theorem 2.3.6 that L¥([—]V2"%)(eval*M) = [M]* and con-
sequently also V. (L¥([—]V2"*)(eval*M) = [M]¥). This is however equivalent to
Ax.(L*([-]V2"%)(eval*M)) = [M] by Fig. 1.7.

Finally, since Vx is an applicative functor,

A (LE([=]V2"%) (eval*M)) = (AK.LK([[—]]V3'*K)> (eval(M))
and the claim follows. ]

Now we prove that FPC-programs - M : Nat, which terminate to a value n, are
interpreted by total denotations, meaning that [M] |} n.

Theorem 2.3.9. For any well typed closed term - = M : Nat we have that
M lbn— [M] 7 n

Proof. Recall that [n]V2' = n

By Lemma 2.2.12 we have that M |} n — eval(M) ||” n. Furthermore, 1" o
[-]V?' : Valy,, — L([Nat]) and n7([z]V?') ¥ n. Thus, Corollary 2.2.11 implies
that L([—]V?")(eval(M)) ¥ n. Now Theorem 2.3.8 gives that [M] ||" n O
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2.4 Lifting Relations

A relation % : A — Valy — Prop can be lifted to a relation Z " : LX(A) — Tm, —
Prop (note that nothing prevents % and A to also depend on x). This is done in two
steps

1. First, we lift a relation % : A — Val; — Prop to arelation Z'™ :A — Tmg —
Prop by letting aZ*™"M £ V.M |V Na#V

2. Then, we extend %™ to L¥(A) by letting

d#" M2 (d >>=F lv.v%TmM>

In the following, we show that the relational lifting respects the monad structure
of L¥.

Lemma 2.4.1. Foralla:A andV :Val, we have aRV ~ (n*(a)) Z" V.

Proof. The proof is immediate by the definition of >>=" and the fact that V || V if V
is a value. O

Lemma 2.4.2. For any d :>"L*(A) and V : Val it is the case that
(step“(A(0t:%).d)) Z"V ~v(at: k).(d[a] Z" V)

Proof. The lemma follows from the fact that for any V the function — Z" V : LK(A) —
Prop is a delay algebra homomorphism. O

Lemma 2.4.3. Let M ~* M, then for any d : LX(A) we have
dR“M=d %M

Proof. The proof proceeds by guarded recursion. Both implications are similar, so
we only prove one direction. Assume d Z"M.

Case: d = n*a
Then n*(a) 7" M directly reduces to 3V.M | V AaZ V. Now Corollary 2.2.8 implies
that M’ |} V and it follows that IV.M || V AaZV .

Case: d = step®d’
Lemma 2.4.2 implies that step*d’ 7 M is equivalent to >(a : k).d' [a] Z " M, and
thus we can apply the guarded hypothesis to get the result. O

Lemma 2.4.4. Let E denote an evaluation context (as specified by the grammar in Sec-
tion2.2). If f : A— LX(B) and E : (TV 6) = (AF 1) satisfy f(a) 7" E|V] whenever
a RV, then for all d : LX(A) and M : T, satisfying d Z " M, also f(d).7" E[M).
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Proof. We proceed by guarded recursion.

Case: d = n"(a)
In this case, % (a) Z " M reduces to 3V.M |V AaZV . This implies that f(a).%" E[V].
By Lemma 2.2.9 we have that M ~~* V and thus also E[M] ~~* E[V]. Now Lemma 2.4.3
gives us f(a).7" E[M).

Case: d = step®d’
Lemma 2.4.2 implies that step*(d’) Z " M is equivalent to >(o : k).d’ [ot] Z " M.
Thus, we get that step® (A (a: k).f(d’ [a])) 7" E[M] by applying the guarded hypoth-
esis. Since f is a delay algebra homomorphism, it commutes with step® and thus the
result follows. O

Corollary 2.4.5. Let E denote an evaluation context (as specified by the grammar
in Section 2.2). If f:A—Band E: (' 0) = (AF 1) satisfy IW.E[V] | W A
f(a) . W whenever a2V, then for all d : LX(A) and M : Tm, satisfyingd Z# " M,
also (LX(f))(d) 7" E[M].

Proof. We apply Lemma 2.4.4 to the function f' £ n¥o f and evaluation context E.
Note that n*(f(a)) " E[V] is equivalent to IW.E[V] L W A f(a) ./ W. O
Coinductive Relation Lifting For a relation % : A — Val; — Prop we define
— % — :Vx.L*(A) = Tmy — Prop by

d R MAEVk.(d[K|Z"M).

If A and Z are clock irrelevant, then % is the greatest fixpoint of the L(A) x Tm,-
indexed endofunctor

Fz: ((L(A) x Tmg) — Prop) — (L(A) x Tm,) — Prop
Fz(P)(n"a,M) £Vk. (a%#"™M)  Fp(P)(step’d,M) = P(d,M),
To see this, we first prove that % is the guarded fixpoint VE(Fp).
Lemma 2.4.6. Let 7% 2 vX(Fy), then for all d : L(A) we have that
dK|Z"M~d.9M
Proof. We proceed by guarded recursion, to that goal, assume that
K <Vd L L(A). (d[K] ZM~d I~ M))

Now, we case on d : L(A), which gives the following.

Case: d = 1"(a)

This case is immediate since both sides reduce to a. % ™M.

Case: d = step”(d’)

For this case, we have to prove that >*(d'[k] Z " M) ~ >*(d’ . M) But this
follows immediately from the guarded hypothesis. O
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Lemma 2.4.7. Z is the coinductive solution of Fy (Lemma 2.4.6). As such it is the
case that:

*nNa#ZM~aZ"™M.
o« step’(d) #M~d %M

Proof. Theorem 1.3.17 implies that F; is clock-irrelevant. Then, the claim follows
from Lemma 2.4.6. ]

As the first application of this lifting, we show that the lifted equality relation can
be used to prove that a natural number program M terminates with value n.

Lemma 2.4.8. Let —eqp,.— : N x Valy,, — Prop denote equality modulo the canon-
ical isomorphism Valy,, ~ N (Lemma 2.2.4). For any m € L(Nat), M € Tmy,, and
n € N we have that

menae MAm " n—M|n

Proof. The proof is by induction on m {}" n. There are two cases to consider:
Case: n"(n) ||V n
By assumption n"(n) qyna; M which by definition means that

Fm.(M |} m) A (neqyaem)

But this implies m = n and thus M |} n.

Case: step”(m) ||" n

By assumption we have step”(m) &qya; M and step”(m) |}¥ n. Now Lemma 2.4.7
gives that m &gy, M and by the definition of |7, we have that m ¥ n. We can now
use the inductive hypothesis to get M || n O

2.5 A logical relation for contextual refinement

In this section, we define a logical relation by guarded recursion. It can be lifted to a
coinductive relation, which we will show to imply contextual refinement.

Definition 2.5.1. We define the following relation by guarded recursion and induction
on well-typed values.

jg,v;n . [0]* — Val, — Prop jg.,Tm :L*[o]* — Tmg — Prop

v jg_,VaI 1% w jg,VaI W v jc1§,Val 1%

nXe o x 300 (vw) <633 (V.W) inty <G inlv




CHAPTER 2. TECHNICAL REPORT: MODELING FPC IN GUARDED TYPE

64 THEORY
K, Val K,Val K, Tm
y <kVely Yw,Waw <572 W — v(w) <™ MW /4]
inry <52 inrv v <&Vl jam x.M

(e k). 0[] =5 o V)

v jz)yarl foldV d=ETmp2g <kVal g

Similar to Lemma 2.3.7 and Lemma 2.4.6, we can prove that — jg’val — and

— jg’Tm — are guarded fixpoints and consequently, we also get coinductive liftings
— <¥al _: [o] x Val, — Prop as well as — <5 — : Vk.LX[6]* x Tm, — Prop
defined by

vV 2 vk (vK] =25V V)

d <o M2VK.(d[x] 5™ M)

Compatibility Lemmas In preparation for the guarded fundamental theorem and
. K,Tm .
guarded congruence theorem, we prove several lemmas which show that <y is
compatible with the typing rules in Section 2.2.
Note, that the compatibility theorems for the unary constructors suc, pred, fst,
snd, inl, inr, fold and unfold are analogous. We thus only prove the cases for pred,
fold and unfold.

Lemma 2.5.2. Forall d € L*N and M € Tmy,, such that d jﬁ’;m M we have that
L¥(suc)(d) < I™ sucM

Proof. See Lemma 2.5.3. O
Lemma 2.5.3. Forall d € L*N and M € Tmy,, such that d jﬁ’aTtm M we have that
L¥(pred)(d) <x." sucM

k,Val

Proof. We apply Corollary 2.4.5 to E = pred ([ ]) and f = pred. Now, if n <," n,
then predn |} max(0,n — 1). Furthermore, we have that pred(n) jﬁ’f' max(0,n— 1),

and the claim follows. OJ

Lemma 2.5.4. Assume that d jﬁ’;m L, e jg’Tm M and ey jc'(,’Tm N. Then also

0 —>
2

Proof. We apply Lemma 2.4.4 to E = ifz(| |,M,N) and

¥ A n=20 — ey
n=m+1 —e
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It now suffices to prove that whenever n <y \ial n, we also have that f(n) <5™™ E|n].

If n =0, then (f(n) <5™™ E[0]) ~ (e; <5™™ E[0]). It follows from Lemma 2.4.3

that E[0] ~~* M and by assumption we have e; 5?;““ M. Thus, the claim follows.
For n = m+ 1 the reasoning is completely analogous. O

Lemma 2.5.5. Assume that d -<§;;m L e <5T™ Mand ey <5™™ N. Then also Let
d <5™™ M, then L*(inl)(d) <51 inlM

Proof. Apply Corollary 2.4.5to E =inl([ ]) and f = inl. O

Lemma 2.5.6. Assume thatd <§ 1™ L, ey <§'™ M and e; <§'™ N. Then also Let

d <5T™ M, then L*(inl)(d) <5[™ inrM
Proof. Apply Corollary 2.4.5to E =inr([ ]) and f =inr. O
Lemma 2.5.7. Assume

1. d_<KTm L

o1+
2. (0 k). (W, Vy VY e [a(v) =5 MV /X))
3. (0 k). (W Vi 25V Y S ela(v) =5 N[V /x])
then also

(d - {inlv — stepX(A (a1 k).e1 [a](v))

<KTM case(L,x.M,y.N)
inrv — step®(A(a:x).ex[al(v))

Proof. We apply Lemma 2.4.4 to E = case([ |,x.M,y.N) and

. (lv'{inlvHstepK(l((x:K).el (o] (v)) )

inrv — step*(A(a:«).ex [al(v))

It now remains to show that if v <%V, then also f(v) <§'™ E[V]. By defi-

nition of v %g\fcly V there are two cases to consider: Either inlw <§\f(|, inlW or

K,Val
inrw <55 inrW.

Ifinlw <& \fcl, inlW, then E[inl W] ~» M[W /x] and thus Lemma 2.4.2 and Lemma 2.4.3
imply that

(f(inlw) <E™™ E[inlw]) (stepK}, a:K).e [a](w) <ETM E[inIW])
~ (k). ( o] (w) <ETm E[inlW])
~ (0t K). (el o] (w) <5T™ M[W/x]) ,

which is true by assumption.

The case where inrw < (’;l‘fc',z inrW is completely analogous O
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Lemma 2.5.8. Ford jg’Tm M and e j?’Tm N we have
(d >>=" Av.e >>= Aw.n*(v,w)) <51™ (M, N)
Proof. We apply Lemma 2.4 .4 iteratively. First, let E = ([ |,N) and
f=(Av.(e>>=" Aw.n*(v,w))).

We have to show that v <5V V we have f(v) <1™ E[V]. This is equivalent to

proving that (e >>=* Aw.n*(v,w)) <5T™ (v N).

To show this, we apply Lemma 2.4.4 again, now to E =
K,Val

(V,]]) and g = Aw.n*(v,w).
Now it remains to prove that if w <5V W, then also g(w) <51™ (V,W). But since
g(w) =n*(v,w) and (V,W) is a value, this is equivalent to (v,w) g;lil (V,W), which
by definition follows from the assumptions v <5V V and w <V w. O

Lemma 2.5.9. Ifd <51™ M, then L*(pr,)(d) <5™™ fstM

Proof. Apply Corollary 2.4.5to E =fst([ ]) and f = pry. O
Lemma 2.5.10. Ifd <5!™ M, then L*(pr,)(d) <5 snd M

Proof. Apply Corollary 2.4.5to E =snd ([ |) and f = pr,. O
Lemma 2.5.11. [fd <5"" Mande <5"™ N, thend-e <™ MN

Proof. We apply Lemma 2.4.4 iteratively and start with E = [ |N and f = A1V'.(e >
>=X Aw.step®(next®(v'w))). Now, we have to show that v <%Val lam x.M implies
that f(v) <¥™™ E[lam x.M)].

This is equlvalent to e >>=* Aw.step* (next(vw)) <5T™ lam x.M(N), which fol-
lows by Lemma 2.4.3 and the fact that E[lam x.M| ~ lam x.M(N).

To prove this, we apply Lemma 2.4.4 again, this time to E = V[ ]| and g =
Aw'.step®(next®(vw’)). Now it remains to show that if w <&Vl W, then also
g(w) <5T™ E[W]. The latter is equivalent to step®(next®(vw)) <5T™ M[W /x|,
since E[W] ~» M[W /x].

But this follows from the definition of v <52 lam x.M and w <5V w. O

Lemma 2.5.12. Ifd <57\ M then also L*(next®)(d) <y 7 fold M.

Proof. We apply Corollary 2.4.5to E = fold [ | and f = next®. It remains to show that
ify <=Val V, then also f(v) </ ™ E[V]. Since E[V] = foldV, this is equivalent

—7[uX.7/X] ~ux.c
to>(a: ). ((JL(OC: K).v) ] j:[p\t/)il.r/X] V) which follows by definition of <Z}>/HT| .
O

Lemma 2.5.13. Ifd <y T M then

d >>=" Av.step*(A(a:k).n*(v[a])) <57y unfold M.
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Proof. We apply Lemma 2.4.4 to E = unfold ([ ]) and
f=Avstep*(A(a:x).n*(v[a])).

Now it remains to show that for v jzg/";l fold V we have that f(v) jf[:; ox) ElfoldV].

The latter is equivalent to step*A (t: k).n*(v[at]) <™ V. by Lemma 2.4.3 and

—1[uX.7/X]
the fact that E[fold V] ~~ V.
Applying Lemma 2.4.2 and Lemma 2.4.1 implies that we only have to prove that

>(a: K). (v (o] jf[:; o/X] V). However, this follows from the assumption v jZ’)XiI
foldV by the definition of <}y'3 . O

Fundamental lemma

For our logical relation to imply contextual refinement, we need it to validate two
quintessential properties: The fundamental lemma and the congruence lemma. Here
we prove that for both, the guarded as well as the coinductive logical relation, the
fundamental lemma is true. As a direct consequence, we see that denotationally equal
terms are in the relation.

In the following, we also consider open terms. The interpretation of open terms
requires an environment p : [I']* and the operational semantics only applies to closed
terms. Therefore, for open terms M and N the proposition [M] 5 <&Tm N[8] is only
meaningful for a suitable pair of environments p and closing substitutions 0. In
general, [M]5 <&Tm N[§] can only be true if p and & are related in some sense.
Before we state the fundamental lemma, we define which environment and closing
substitution pairs have to be considered.

Definition 2.5.14. For 6 : Sub(-;I") and p € [I']* we define
p <5V §Ly(x: o) el p(x) <5V 8(x)

0 : Sub(+;T") is the precise way of denoting a closing substitution for I' — it
contains a closed value for every variable in I'.

Lemma 2.5.15 (Guarded Fundamental Lemma). For all M € ng we have that
Vp,8.(p < 8) = [M]y <5 ™™ M[8]

Proof. The proof proceeds by induction on M : Tml; and relies almost entirely on the
compatibility lemmas with the only exception of the M = lam x.M’ case.

Case: lam x.M’
By the induction hypothesis, we have that

Vp,8.(p =fy 8) = [M]5 =¥ M'[8).
Thus, we get that

Vp, 8. V.(p =V )A (v =&V V) > M), 5T M8,V /4]
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—p.5.(p <EV 8) Y v.(v <5V V) s (IS, <5 M5,V /x))
=Vp,8.(p KVa' 8) — [lam x.M']y?"* <5V lam x.M'[8)
=Vp,8.(p ’(Va' 8) — n*([lam x.M'Ty"*) <517 lam x.M'[5]
=Vp,8.(p ’<Va' 8) — [lam x.M']% <557 lam x.M'[3]
Case: MN
Let p <~¥2' §, by induction hypothesis we have M]5 = <&T™ M([5] and [NT5 = <k Tm

N[8]. Now Lemma 2.5.11 implies that [MN]% <z’ ™ MN(S).

Case: case(L,x.M,y.N)
Let p <5V2' §, by induction hypothesis we have 25 <1 L[8]. Furthermore, it
follows from the induction hypothesis that

W V(v <5V V) [M]E, <5 M[8,V /4]

as well as
Y, W.(w <87 W) = [N]5,, <7 N[S,V/y.

But now we can simply apply Lemma 2.5.7 to get
inlv — step®(A(a: k).[M]X

[L]E >>=x VTP (Ao k). [MI5.) <5 Case(L,x.M,y.N)[5]
inrw — step®(A (o : k).[N]5,,)

Case: unfold M
Let p <Kval 8, by the induction hypothesis we have [M]} =<}’ . ™ M[8] and now

uX T
Lemma 2.5.13 implies that [unfold M]§ Z;(mr/x unfold M[6]

The remaining cases follow similarly. O

Corollary 2.5.16. For terms M, N : Tm(r7 we have that
(vp : [CJ*.[M]5 = INTS) — (P, 8.(p £ 8) = M5 =5™™ N[3)).

Proof. The fundamental lemma implies that Vp, 8.(p jF’VaI 6) — [N]p <&Tm N[8).
But now we can just replace [N] 5 by [M]f and the claim follows. O

Lemma 2.5.17 (Coinductive Fundamental Lemma). Let M € Tm , then
Vi (vp,8.(p <EV §) - [M]5 <5 M[8])

Proof. Let M € Tmb, then by Lemma 2.5.15 we get that Vp,8.(p <5V &) —
[M] 5 <KTm [6] and consequently also

Vi.(Vp,8.(p <V 8) - [M]5 <E™™ M[8)).
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Congruence lemma

We now turn to the other quintessential property for logical relations: The congruence
lemma. It says that the logical relation is closed under typed contexts C: (I'- o) =
(AF 7). We prove a congruence lemma for the guarded as well as the coinductive
relation.

Lemma 2.5.18 (Guarded Congruence Lemma). For any terms M,N € Tm and every
context C: (' 0) = (AF T) we get that if Vp,5.(p -<Kva| 8) — [M]§ = _<1ch N[§]
then also p,8.(p <5V &) — [CIM]]5 <FT™ (C[N))[3]

Proof. The proof proceeds by induction on context derivations. All cases — except

for the M = lam x.M’ case — are direct consequences of the compatibility lemmas.
Case:C=lamx.C': (' 0)= (AF 17— 1)

Assume Vp,8.(p =V §) — [M]5 <§™™ N[5]. We have that C': (T - 0) =

(A,(x:71) F 1) and by the 1nduct10n hypothesis it follows that

Vp,8.(p =Nva 8) — [C'IM]]E =<5 (C'[N])[5]

—Ax:T|
It now follows that
¥p,8.p <572 8 — [C'M]]5 <5 (C'IN])[8)
=Vp,8,nV.(p =V S Av <"Va' V) = [C'M]]5, =5 (C'[N])[8,V /4]

=p,8(p <3 8) = (v <5V v = [CMI]5, <5 (CIV)IS,V /)
=p,8(p <5V §) — [lam x.C'[M]]?"* <52, (lam x.C'[N])[8,V /]
=Vp,5(p KVa' 8) = n*(llam x.C'M][*"*) <51, (lam x.C'[N])[8,V /x]
=Vp,5(p "V"" 8) — [CIMI]y =517, (CIND)[S,V /A

Case: C=foldC': (THo)= (A uX.7)
Assume Vp,8.(p <V §) — [M]5 <5T™ N[S]. We have that C': (T 0) = (A+
t[uX.7/X]) and thus by induction hypothesis we have

Vp,8.(p =3V 8) = [C'IMI]5 <5axem) (CINDIS]

oluX /x|

By Lemma 2.5.12 we have that

vp.8.(p <5V 8) = M5 <5TT L (C'IND)S]
= (Vp,&(p <EVal §) o [CIM]S >>=% Avn*(A(a: K).v) 50T (Fold '[N })[5])

=Vp,8.(p =XV 8) — [fold C'[M]]5 =<k¥ T (foldC'[N])[5]

Case: C = case(L,x.C",y.N): (T'F o) = (AF 1)
Assume that Vp,5.(p <V §) — M]5 <&Tm A1'15]. We furthermore have that
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1. AbL: 71+ D
2.C:(T'to)=(Ax:mE1)
3. A y:mhFEN:7T
By the induction hypothesis, we have
Vp,8.(p =Xy 8) = [C'M][5 =T (C'[M))8.

Furthermore, Lemma 2.5.15 implies that Vp,5.(p = Kval 6) — [L]5 1’;12 L[d] and

¥p,8.(p =ive 8) — [N]E ="M N[8).
Thus, for all p and & such that p jZ’VaI 0, we get that

T
L [LI5 =545 LIS]
2. W V.(v 25 V) = [CM]I5, 22T (M8, /4]
3. W, V(v 25V V) 5 [N]E, =5 N(S,V /4]
Now, using Lemma 2.5.7 we conclude that
inl tep(A(a : x).[C'[M]]E
(L] 5= § v step® (e ICMIEL) et oo e ),y 8]
inrv— step® (4 (o : x).[N]5 ,)
and thus we get that
K,Val KTm !
Vp,8.(p 257 8) = [CM]]p = C[M]
The remaining cases are similar. O

Theorem 2.5.19 (Coinductive Congruence Theorem). For any terms M,N € TmF and
every context C: (T'H o) = (AF 1), if Vk. (Vp o.(p -<Kva| 6) — [M]y <K Tm N[5]>,
then also

vk (vp,8.(p =5V 8) = [CMIL5 <FT™ (CIN))[3))

Proof. Assume VK. (Vp, o.(p jK’VaI 0) — [M]5 <k Tm N[5]>. We want to show
V. (Vp,S.(p <<Val §) 5 [CIM]E <5 (C [N])[S]), and thus let & : %, by clock
application we get that Vp, §.(p jF’VaI o) — [M]5 <&Tm N[§).

K, Tm

We now apply Lemma 2.5.18 and get Vp,d.(p jZ’VaI o) — [CIM]]5 =z
(CIND)[8]. O
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Contextual refinement

Finally, we can put all the pieces together and show that the logical relation implies
contextual refinement.

Theorem 2.5.20. Let M,N : TmL, then
(ve.(vp,8.(p =FY*' 8) = [M]5 <57 N[8])) - M Zcoe N

Proof. Let M,N : Tm} be such that Vx.(Vp,8.(p ="' 8) — [M]5 <5™™ N[5)).
We have to show that for any C : (' ¢) = (F Nat) it is the case that
CIM] 4 n— CIN] 4 n.
Let C: (' o) = (- Nat) be arbitrary, by Theorem 2.5.19 it follows that
i ([CIM]* =™ CIN)).
Now assume that C[M] || n, then by Theorem 2.3.9 we have that [C[M]] || n.

Thus, Lemma 2.4.8 implies that C[N] |} n. Note that Lemma 2.4.8 applies, since

Val
vi.( jﬁata ) = eqat- O

2.6 Examples

We now give additional examples to showcase the usefulness of the denotational
semantics and the logical relation.

Example 21. For any term ' M : 7[uX.7/X] and any p : [I']* it is the case that
[unfold (fold M)] ;5 = step™(A(a : x).[M] )
Proof. We have that

[unfold (fold M)] 5 = ([fold M]5) >>=" Av.step(Aa.n"(v[a]))
= L*(next®)([M]5) >>=" Av.step”(A(a:x).n"(v[a]))

Since L¥(next") is a delay algebra homomorphism, it commutes with >>=* and
consequently we get

= [M]§5 >>=" Av.step®(A(ar:x).n"(next™(v)[a]))
= [M]§5 >>=" Av.(step" (A(a : x).n*V))
Since step” is a delay algebra homomorphism, we furthermore get that
=step”(A(a: x).([M]5 >>=" Av.n*v))
= step"(A(a: x).([M]p))
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The following example shows that | ¥ refines every program.
Example 22. Let LK : L*[0]* be defined by LK £ fix*step*.
For any well-typed term M we have that
(J_K KTm M) (_LK KTm M)

Consequently, for any well-typed term M we have 1K <& ™M

We now turn to the previous example of recursive functions, and show that (Y f)V
and f(Yf)V are contextually equivalent for any value V. Note that in a call-by-
value setting, this is the correct formulation of this theorem: Y f and f(Y f) are not
necessarily contextually equivalent.

Theorem 2.6.1. For any open value T' - f : (6 — T) — 6 — T and open value
'V : 0 it is the case that

YAV Zcx F(YS)V

as well as

JYV Zew (YS)V

Proof. Both directions are completely analogous, we thus only show one of them.
The fundamental theorem Lemma 2.5.17 directly implies that both

Vi (¥p.8.(p <V 8) = [(YHVIS <5 ((Y/)v)[8)

From Example 17 we know that ((Y f)[6])(V[3]) ~* ((f(Az.es(foldef)z))[8])(V[0])
and also (f(Yf)[8])(V[8]) ~* ((f(Az.ef(foldey)z))[8])(V[5]).

We can use Lemma 2.4.3 iteratively to get that

vie. (¥, 8.(p <EY 8) - [IYNVIS =™ (F(Y))V)[8))
But now Theorem 2.5.20 directly implies that (Y f)V <cw f(Y f)V. O

In the following, we investigate a more complicated example that involves fix-
points and higher-order functions.

Syntactic Minimal Invariance Let 72 uX.1+X — X.
It is easy to see that a function

id,ic = lam x.case(unfoldx, y.fold (inl (())), g.fold (inr (g)))

should be contextually equivalent to the identity function. Note, that either side of the
case elimination is basically the identity function (modulo the folding and unfolding
of the recursive type 7).

Our goal is to prove that the identity function id is contextually equivalent to the
recursively defined function / defined in Fig. 2.7. This means, that we have to prove
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h = Y (F) where
F:(t—>1)—>1—>71
F = lam f.(lam(x: 7). let (t = unfoldx) in
case(t,y.casel(y),g.case2(g))), where
casel(—) £ fold (inl ({)))

case2(g) = fold (inr (lam y.f(g(f(¥)))))

hyar = lam z.ep(fold (er))z, where
er:(UWX X —>T—>T) =TT

er = lam y.let (y = unfoldy) in F(lam x.y'yx)

Figure 2.7: Definition of recursive identity

id <ctx b and h =cyy id. The function & : T — 7 complicates the function id,; by
interleaving the second case with recursive calls of a function variable. The challenge
is to realize that by definition the recursive call of f is forced to be the identity.

hya1, inlcase and inrcase are all of type T — 7. We have that & | h,, and fur-
thermore, there exists a value Vg, such that F (h) | Ve (in either case just one
reduction step).

We start by proving id <ci, 2 To do so, we use Theorem 2.5.20. It suffices to show
K,Val . . .
that Ax.x <757 hyy, since by a simple calculation we get

[['d]]K jg;l'{_n h~Ax.x j¥X?I hyar
We proceed by guarded recursion and thus prove

K K,Val K, Tm
> (AX.X =t hval) — Axx 250 M

Thus, assume the guarded hypothesis and let v,V be arbitrary such that v <7 el

foldV (all values of type 7 are of the form foldV). We ought to show that v <% Tm
hyai(fold V). However, by Lemma 2.4.3 it is sufficient to prove v <5 1™ (F (hyy))(fold V),
since there exists a value Vi such that (F(YF))V ~* W as well as (YF) (V) ~*
WE.

We proceed by distinguishing the different cases for v j?’val foldV. Initially,
the only case to consider is (o : x).(v[o] =¥V V). However, we furthermore

—l+1=7
distinguish the cases for v |a] jl’(jrvfif V, which leaves us with two cases:
1> (o). (x <V () with v]a] = inl (x) and V = inl (())

2. b (0:k).(w =2EYa W) with v[a] = inr (w) and V = inr (W)
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Case: v[a] =inl(x) and V =inl (())
Since (F (hyq))(fold (inl (()))) I fold (inl (())), it follows that

S (% <™ () b (@ 6).(v[a] <FT™inl (())

~y 5T (F(hyy)) (fold V)
and the claim follows.

Case: > (a: k).(w =5Y2' W) with v[a] = inr (w) and V' = inr (W)
We have that F (A ) (fold (inr (W))) ~* fold (inr (lam y.hy0 (W (hya(y))))) and thus

> (W '<§_\>/$I |3myhval( (hval(y))))
~ o (inrw <2 e (lam v (W (B (3)))))

~ v <5Vl fold (inr (Iam .y (W (hya (9)))))

~ (Axx)(v) 25T F (ha) (V)
It remains to show that > (w <Y lam ., (W (hya (¥)))), which is by definition
equivalent to

(VV V. ( KVaI V) —>W(\7) j?Tm hval(W(hval(V)») :

To prove this, we first assume a tick o : K. Under tick, we are free to apply the guarded
hypothesis and thus the claim follows by applying Lemma 2.5.11 three times:

K,Val KTm h

1. ¥ <z V and the guarded hypothesis (under tick) [id]* <z5¢ hya give that
~ K Tm X7
V=7 hval(v)

T ha (V) and the assumption w <%Y2' W give w(#) <5T™ W (h, (V)

2. 7 =<8
3. w(®) =<5 W (hye(V)) and the guarded hypothesis [id]* <5 T™ b, give that
w(®) =2 ha (W (ha(V))).

This concludes the first direction.

The other direction /2 <ci, id Using Theorem 2.5.20, we only have to show that
[h]* < <&M id. Similarly as before, we prove instead [hyat] V"< <5Val lam x.x by
guarded recursion. To that goal, we assume the guarded hypothesis and v,V arbitrary
such that v <V fold V. We have to show that [h,]V2"*(v) <5 ™™ x[fold V /x].
First, recall Example 20 and the definition of 4,,;. By a similar line of reasoning,

we get

[[hvazﬂva"K(V) L [[Iam z.er(fold (eF))Z]]VaI,K(v>
= [er(fold (eF))ZM—w
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[
([F (hva)] - v)
Vew]V2 ()

e A {inl (v’) — AKIIfC)ld (inl (<>))]]Val,x
T Linr (V) = A¥[fold (inr (Iam .l (g (v (¥)))))] V25

Now it suffices to prove that step® (A(0: k).ecase (v]@])) <5T™ foldV, since by the
previous calculations it follows

step® (A(a:K).ecase(v[@])) j?’Tm foldV
— () (step® (A(0t: )case(v[r])) <™ fold V)
~ (AF)° (step® (A(0t: K).ecase(v[X]))) <5T™ foldV
~ [hya] V2" (v) <5V foldv

As for the previous direction, we proceed by inducting on v jf’val foldV, which
leaves us with two cases:

1. > (o). (x <V () with v[a] = inl (x) and V = inl ({))

2. (k). (w =5Ya W) with v[o] = inr (w) and V = inr (W)

Case: > (a: k). (* <Kva' (}) with v[a] =inl (x) and V =inl ({))
It follows that ecase (V[ ]) AX([fold (inl ({)))]V2"*¥) and thus it remains to be shown
that step® (A (at: ). A% ([fold (inl ()))]V2"¥)) =%V fold (inl (())), which by Lemma 2.4.2
is equivalent to

(%2 (([fold (in (())]¥*) =<EY2" fold (inl ()

but this is implied by the fundamental lemma 2.5.15.

Case: > (ot: k).(w <5Y2 W) with v[o] = inr (w) and V = inr (W)
We have that ecse(v[a]) = AX([fold (inr (Iam y.h,0 (w(hya ()] V2"%). Tt now fol-
lows that

() (lam et O ()] <532 W) 2)
= (&) (I1am v (w ()2 <EY2 ) 23)
~ (A%)*([fold (inr (lam y.htar (w(hiat ()))DIF) <ET™ foldV (2.4)
= (65)2 (mext* (inr ([1am y.hyar (w(ha (0))]25)) <5¥! fold (inr (W)~ 2.5)

epX (A (001 K).ecase(v]t])) <5T™ foldV (2.6)

| 2
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and therefore, it suffices to prove Eq. (2.2). Thus, by definition of jfilil , it remains

to show that

= <Vv’,V’.(v’ <5Val vy s Tlam yohya (W(hva ()] V205 (v) <51 W(V)) )
which is furthermore equivalent to

o (W V(0 S5V S ([ (WD (D] 1)) <510 W(V)).

This follows — just as for the previous direction — by applying Lemma 2.5.11 three
times, while using the guarded hypothesis under tick.

2.7 Related works

In this paper, we have shown how to use synthetic guarded domain theory (SGDT) to
model FPC. SGDT has been used in earlier work to model PCF [91], a call-by-name
variant of FPC [82], FPC with general references [102, 103], untyped lambda calculus
with nondeterminism [84], and guarded interaction trees [52]. Thus, the contribution
of this technical report is a denotational semantics for call-by-value FPC together
with an operationally sound relation in a guarded type theory.

Synthetic guarded domain theory [23] is an abstraction of metric domain theory
[10]. These metric models have been used to model PCF by Escardé [50] already
before the development of SGDT. Synthetic guarded domain theory has been exten-
sively used to internalize programming languages and reason about their operational
behavior. [23, 69]

There are different approaches to partiality in type theory. We use Capretta’s [29]
coinductive delay monad as a constructive way to represent potentially not terminating
computations. It is well known that the resulting semantics is too intensional and
needs to be quotiented by weak bisimilarity to have the correct equality. This turns
out to be subtle [9, 34]. We instead define a logical relation that implies contextual
refinement.

Our approach is inspired by Mggelberg and Paviotti [82], who followed a similar
approach and defined a denotational semantics for call-by-name FPC, they used an
extensional guarded type theory with clock quantification. Furthermore, M@gelberg
and Vezzosi [88] used this technique to prove applicative may-similarity for an untyped
lambda calculus with non-determinism.

There have been other synthetic approaches to domain theory: in particular
synthetic domain theory — an abstraction of the classical Scott domain theory.

For instance, Rosolini and Hyland [64, 98] developed categorical models in which
domains are certain kinds of sets. Fiore [51] axiomatized these models, and Reus [97]
presented synthetic domain theory formally in the extended calculus of constructions
together with extra axioms. Later on, Simpson [100] defined an interpretation of FPC
using intuitionistic ZF set theory.

There are also analytic approaches to domain theory in type theory — that is,
domain theory is developed inside a meta-theory, such as the Calculus of Constructions.
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Examples of this are Benton et al. [18, 19], Dockins [46]. De Jong et al. [45]
constructed domain theory in a predicative homotopy type theory and interpreted PCF
in it.

Altenkirch et al. [9], Chapman et al. [34] used homotopy type theory and (in the
case of [9]) quotient inductive inductive types to show that the Capretta’s delay monad
[29] quotiented by weak bisimilarity forms again a monad.

We work in Clocked Cubical Type Theory [72], since it is a well-known and

developed guarded type theory, which — through the clock quantification type former
— also has definable coinductive types. We anticipate that set quotient types are going
to be handy in defining monads for other effects. (See [85, 88]). Besides that, this
work could be carried out in other suitable modal type theories which provide a similar
interface, such as [58].

2.8 Conclusion

We defined operational and denotational semantics for FPC in guarded type theory
and constructed a relation between denotations and syntax to reason about contextual
refinement. While this is the first such account in constructive guarded type theories,
this result is not new and has been proven in different iterations before. As we see it,
there are two considerations which justify the effort:

 This semantics is compositional and we conjecture that large parts of this work
can be reused in more general settings with other effects.

* Constructive meta-theories allow proof assistant formalizations which makes
complicated constructions more tractable.

In future work, we want to combine and extend these results to programming languages
with other effects, such as probabilistic choice or non determinism.






Chapter 3

Modelling Probabilistic FPC in
Guarded Type Theory

Abstract

Type theory combines logic and programming in one language. This is
useful both for reasoning about programs written in type theory, as well as
for reasoning about other programming languages inside type theory. It is
well-known that it is challenging to extend these applications to languages with
recursion and computational effects such as probabilistic choice, because these
features are not easily represented in type theory.

We show how to define and reason about FPCg, a programming language
with probabilistic choice and recursive types, in guarded type theory. We use
higher inductive types to represent finite distributions and guarded recursion
to model recursion. We define both operational and denotational semantics of
FPCg and prove soundness. Finally, we construct a relation between the two
and show how to use this to reason about programs up to contextual equivalence.

3.1 Introduction

Probabilistic programming languages include commands that generate random values
by sampling from a probability distribution. Thus, a probabilistic program evalu-
ates to a distribution of values, as opposed to a single value in the case of ordinary
deterministic computation. It is well known that it is challenging to develop seman-
tic models for reasoning about higher-order probabilistic programming languages
including recursion, even in a classical meta-theory. Nonetheless, a plethora of de-
notational approaches have been investigated in recent years, [43, 48, 61, 68, 107].
Other operational-based approaches to reason about probabilistic programs have also
been shown to scale to rich languages with a variety of features, using techniques such
as logical relations [26, 42, 67, 111, 113], or bisimulations [41, 73].

In this paper, we investigate how one can develop operational and denotational
semantics of FPCg, a call-by-value higher-order probabilistic programming language

79
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with recursive types, in (a variant of) constructive type theory, and prove that the
denotational semantics is adequate with respect to the operational semantics, paving
the way to formalisations of programming language semantics in type theory. There
are several technical challenges to meet this end: 1. The standard (classical) oper-
ational semantics of FPCg relies on real numbers and on classical reasoning, not
available in constructive type theory. 2. FPCg includes non-terminating computations,
which means that our denotational semantics must use some kind of domain theory.
3. FPCs includes recursive types, which means that we must be able to define domains
recursively in some way.

To address the latter two challenges, we will make use of a form of guarded type
theory, which can be thought of as an abstract approach to step-indexing techniques
[11, 12] and metric domain theory [10, 49]. Indeed, in guarded type theory one can
use guarded recursive types to develop synthetic guarded domain theory [23], which
has been used in earlier work to model (ordinary, non-probabilistic, call-by-name)
FPC [82].

The specific guarded type theory we use in this paper is Clocked Cubical Type
Theory (CCTT). It includes a modal type-operator >*, indexed by a so-called clock k
(see Section 3.2), to describe data that is available one time step from now, and it is
possible to define elements by guarded recursion by means of a fixed point combinator
fix* : (>*A — A) — A. By applying the fixed point combinator to an operator on
a universe one can obtain solutions to guarded recursive type equations [21]. For
example, one can define a guarded delay monad L*, which maps a type A to L¥A
satisfying L*A ~ A +*(L*A). This guarded delay monad is used in [82, 91] to model
non-terminating computations and in the guarded domain theory of op. cit., a guarded
domain is then an algebra for this monad.

To address the first challenge, we define a novel combined distribution (for proba-
bilistic choice) and delay (for non-termination) monad in synthetic guarded domain
theory, which we refer to as a guarded convex delay monad and which we denote by
D¥. On a type A, D¥A ~ Z(A +1>*(D*A)), where Z is a finite distribution monad.
Intuitively, this means that a computation of type A will be a distribution over values
of A (immediately available) and delayed computations of type A.

Clocked Cubical Type Theory not only models guarded recursion but also higher-
inductive types (HITs), which we use to define the finite distribution monad Z: on
aset A, ZA is the free convex algebra [66], that is, a set ZA together with a binary
operation @, , indexed by a rational number p, satisfying the natural equational
theory (idempotency, associativity, and commutativity). Using a HIT to represent
distributions, as opposed to a partial function from A to the rationals between 0 and
1, allows us to use the equational properties (associativity and commutativity) of the
meta-language level when reasoning about the denotational semantics of FPCg, and
it provides us with a useful induction principle for proving propositions ranging over
PDA.

We define a notion of contextual refinement for FPCg4, terms, by closing terms
under contexts of unit type and comparing their probabilities of termination, as is
standard. In contrast to the classical setting, we only use finite approximations since



3.2. CLOCKED CUBICAL TYPE THEORY 81

the limits of termination probabilities cannot be computed in finite time. Moreover,
we define a logical relation, which relates the denotational and operational semantics,
and prove that it is sound with respect to contextual refinement. Traditionally, defining
a logical relation relating denotational and operational semantics for a language
with recursive types is non-trivial, see, e.g., [96]. Here we use the guarded type
theory to define the logical relation by guarded recursion. As usual, the logical
relation is divided into a relation for values and a relation for computations. Since
computations compute to distributions, the challenge here lies in defining the relation
for computations in terms of the relation for values. Earlier work on operationally-
based logical relations [7, 26] used bi-orthogonality to reduce the problem to relating
termination probabilities for computations of ground type. Here, we follow the
approach of the recent article [59], which uses couplings [16, 78, 105, 110] to lift
relations on values to relations on distributions. Note that the development in [59]
relies on classical logic (in particular, the composition of couplings, the so-called bind
lemma, relies on the axiom of choice) and thus does not apply here. Instead, we define
a novel constructive notion of lifting of relations for convex delay algebras, for which
we establish a series of basic results, including a version of the important bind lemma
that allows us to compose these liftings in proofs.

Finally, we use the semantics and the logical relation to prove contextual refine-
ment of examples that combine probabilistic choice and recursion.

Contributions

1. To the best of our knowledge, we present the first constructive type theoretic
account of operational and denotational semantics of FPCg,.

2. Our denotational semantics makes use of a novel guarded convex delay monad,
which is defined as the solution to a guarded recursive type equation, and which
can be understood as a natural generalization of earlier guarded delay monads.

3. We develop the basic constructive theory of couplings for convex delay algebras
and use it to define a logical relation, relating denotational and operational
semantics.

4. We demonstrate how to use the semantics to reason about examples that combine
probabilistic choice and recursion.

3.2 Clocked Cubical Type Theory

We will work in Clocked Cubical Type Theory (CCTT) [72], an extension of Cubical
Type Theory [37] with guarded recursion and higher inductive types. At present,
CCTT is the only existing type theory containing all constructions needed for this
paper. We will not describe CCTT in detail, but only describe the properties we need,
with the hope of making the paper more accessible, and so that the results can be
reused in other (future) type theories with the same properties.
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Basic properties and HITs

CCTT has an infinite hierarchy of (Tarski style) universes (U;), as well as identity
types satisfying the standard rules and function extensionality. Precisely, CCTT, being
based on Cubical Type Theory, has a path type as primitive, rather than an identity type
in the traditional sense. However, using the path type, one can encode an equivalent
identity type [37]. We will write a =4 b, or just a = b, for the identity type associated
with terms a,b : A of the same type. Following conventions from homotopy type
theory [106], we say that a type A is a (homotopy) proposition if for any x,y : A,
the type x = y is contractible, and that it is a (homotopy) set if for any x,y : A, the
type x =y is a proposition. We write Prop|i], and Set; for the subuniverses of U; of
propositions and sets respectively, often omitting the universe level i. We write A ~ B
for the type of equivalences from A to B. We shall mostly use this in the case where A
and B are sets, and in that case, an equivalence is simply given by the standard notion
of isomorphism of sets as phrased inside type theory using propositional equality.
CCTT also has higher inductive types (HITs), and we will use these to construct
propositional truncation, set truncation and the finite distributions monad (see sec-
tion 3.3). In particular, this means that one can express ordinary propositional logic
with operators A, V,3,V on Prop, using the encodings of 3 and V defined using propo-
sitional truncation [106]. Recall in particular the elimination principles for 3: When
proving a proposition Y assuming 3(x : X).¢(x) we may assume we have an x in
hand satisfying ¢ (x), but we cannot do that when mapping from 3(x : X).¢(x) to an
arbitrary type. We will also need inductive types to represent the type .4~ of natural
numbers, as well as types and terms of the language FPCg, described in section 3.5.
These are all captured by the schema for higher inductive families in CCTT [72].

Guarded recursion

Guarded recursion uses a modal operator > (pronounced ‘later’) to describe data
that is available one time step from now. In multiclocked guarded recursion, > is
indexed by a clock k. Clocks can be variables of the pretype clock or they can be the
clock constant kj. Clocks can be universally quantified in the type Vx.A, with rules
similar to II-types, including a functional extensionality principle. Introduction and
elimination for > is by abstraction and application to ticks, i.e., assumptions of the
form o : K, to be thought of as evidence that time has ticked on clock k. Because ticks
can occur in terms, they can also occur in types, and the type > (a: k).A binds o in A.
When o does not occur in A we simply write >*A for > (o : k).A. The rules for tick
abstraction and application that we shall use in this paper are presented in Figure 3.1.
Note that the rule for tick application assumes that § (or anything occurring after
that in the context) does not already occur in ¢. This is to avoid terms of the type
>¥ KA — >XA merging two time steps into one. We will sometimes use the notation

next 2 Ax.A(a:x).x: A — > A, (3.1)

The rules presented in Figure 3.1 are special cases of those of CCTT. The general
rules allow certain ‘timeless’ assumptions in I to occur in 7 in the tick application
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k:clock el Ckt:>(o:k)A  T,B:xT'F
Ma:xk [B:x,T"Ft[B]:A[B/c]
Na:xkt:A I''k:clockkF7:A
'-A(o:x).t:>(a:k).A ' Ak.t:VKk.A
CFt:VkA Tk« :clock CHt:p"A— A
CH k'] : A[K' /K] [F dfix*r:>*A
FFr:pFA—A

[k pfix®r > (a: ). (dfix*r) [a] =4 1(dfix"r)

Figure 3.1: Selected typing rules for Clocked Cubical Type Theory.

rule. This allows typing of an extensionality principle for &> of type
(x=peay) =>(a:x).(x[a] =4 y]a]). (3.2)

In this paper we shall simply take this as an axiom. One consequence of (3.2) is that >
preserves the property of being a set or a proposition. Other omitted rules for ticks
allow typing of a tick-irrelevance axiom

tirr™ I (x: p*A) > (o k) > (B k). (x[a]) =a (x[B])- (3.3)

The fixed point combinator dfix allows for encoding and programming with
guarded recursive types. Define fix" : (5*A — A) — A as fix" f = f(dfix* f). Then
one can prove that

fix*r = r(A (o0 : k) .fix"t). 3.4

Applying the fix point operator to maps on a universe, as in [22], one can encode
guarded recursive types such as the guarded delay monad L* mapping a type A to
L¥A satisfying

L*A ~ A+>"(L*A). (3.5)

In this paper, we will not spell out how such guarded recursive types are defined as
fixed points, but just give the defining guarded recursive equation. Intuitively, the
reason this is well defined is that L¥A only occurs on the right-hand side of (3.5)
under a >, which allows the recursive equation to be phrased as a map >*U — U.
One can also use fix to program with L* defining, e.g., the diverging computation
as | = fix(Ax.inr(x)) (leaving the type equivalence between L¥A and its unfolding
implicit). In this case (3.4) specialises to L = inr(A(o:k).L).
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Coinductive types

Coinductive types can be encoded by quantifying over clocks in guarded recursive
types [13]. For example, the type LA £ Vx.L¥A defines a coinductive solution to
LA ~ A+ LA in CCTT, provided A is clock-irrelevant, meaning that the canonical map
A — VK.A is an equivalence. More generally, one can prove that any functor F : U — U
(in the naive sense of having a functorial action (A — B) — FA — F'B) commuting
with clock quantification in the sense that F (Vk.X) ~ Vk.F (X) via the canonical map,
has a final coalgebra defined as v(F) £ Vk.v¥(F), where v¥(F) ~ F(>X(v¥(F))
is defined using fix. This encoding also works for indexed coinductive types. The
correctness of the encoding of coinductive types can be proved in CCTT, and relies
on the type equivalence

VK.A ~ VK. DXA.

For the encoding to be useful, one needs a large collection of clock-irrelevant
types and functors commuting with clock quantification. We will need that .4 is
clock-irrelevant, and that clock quantification commutes with sums in the sense that
Vk.(A+B) ~ (Vk.A)+ (Vk.B). Both of these can be proved in CCTT using the notion
of induction under clocks for higher inductive types. Note also that all propositions
P are clock-irrelevant, because the clock constant Ky can be used to define a map
(Vx.P) — P. For any other types that we need to be clock-irrelevant, we use the
following.

Lemma 3.2.1. Suppose i: A — B is injective in the sense of the existence of a map
Ix,y : A.(i(x) = i(y)) — x =y, and suppose B is clock irrelevant. Then also A is
clock-irrelevant.

3.3 Finite distributions

For the rest of the paper, we work informally in CCTT. We start by constructing a
monad ¥ for finite distributions on a set. We will assume a type representing the
open rational interval (0,1). In practice, there are several ways of specifying this,
for example as a type of pairs (n,d), of mutually prime, positive natural numbers
satisfying n < d. We will not specify how to do this, we just need a few operations:
product, division, and inversion (1 — (—)), as well as the fact that (0,1) is a set with
decidable equality, and that (0,1) is clock irrelevant. The latter follows from the
embedding into .4 x .4 and Lemma 3.2.1. Likewise, we need a representation of
[0, 1], obtained, e.g., by just adding two points to (0, 1).

In classical presentations of probability theory, a finite distribution on a set A is a
finite map into [0, 1], whose values sum to 1. In type theory, this would be represented
by a subtype of A — [0, 1], which would need some notion of finite support, as well
as a definition of the functorial action of Z. It is unclear to us how to do this without
assuming decidable equality. Another approach could be to use lists of key-value pairs,
but this requires a quotient to obtain the correct notion of equality of distributions.
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Here we instead choose to represent & as the free monad for the theory of convex
algebras, which is known to generate the finite distribution monad [66].

Definition 3.3.1 (Convex Algebra). A convex algebra is a set A together with an
operation & : (0,1) - A — A — A, such that

W&y = (idem)
UDpVv=VD_pU (comm)
(1 ©p o) Bg 3 = 1 Dpg (Nz @% I~L3> (assoc)

A map f:A — Bbetween convex algebras A and B is a homomorphism if f(u®, V) =
f(u)®, f(v) holds for all u, v, p.

Definition 3.3.2. Let Z(A) be the higher inductive type defined using two constructors
0:A— 9(A) @:(0,1) > 2(A) > 2(A) = 2(A)

and equations for idempotency, commutativity and associativity as in the definition of
convex algebra, plus an equation for set truncation.

This definition can be formalised as a HIT in CCTT, similarly to the definition
of the finite powerset [72]. With that definition, the recursion principle for the HIT
exactly corresponds to Z(A) being a free convex algebra.

Proposition 3.3.3. Z(A) is the free convex algebra on A, in the sense that for any
convex algebra B, and function f : A — B, there exists a unique homomorphism of
convex algebras f : 2(A) — B satisfying f = fo 8. As a consequence, 9(—) forms a
monad on the category of sets.

Recall also the following induction principle for the HIT Z(A): If ¢(x) is a
proposition for all x : Z(A) and ¢ (5 (a)) holds for all a, and moreover, ¢ (i) and ¢(Vv)
implies ¢ (u @, v) for all i, v, p, then ¢ (x) holds for all x.

If X has decidable equality, one can associate a probability function py, : X — [0, 1]
by induction on the distribution y using psy)(y) = 1 if x =y and ps(,)(y) = 0 else.
Define the Bishop finite sets in the standard way by induction on n as Fin(0) = 0 and
Fin(n+ 1) = Fin(n) + 1. For these sets, we can relate Z to its classical definition.

Lemma 3.3.4. Z(Fin(n)) ~ X(f : Fin(n) — [0,1]).sum(f) = 1, where sum is the
sum of the values of f.

Proof. Let 2'(Fin(n)) 2 X(f : Fin(n) — [0, 1]).sum(f) = 1, and note that this carries
a convex algebra structure as well as contains Fin(n) via a dirac map § both defined
in the standard way. We show that this is free by induction on n. In the case of n =0,
clearly 2'(Fin(0)) is empty, and so the case follows. For the inductive case, let n be
the element of Fin(n+ 1) not in the inclusion from Fin(n). Given f : 2'(Fin(n+1))
we must define g(f). By decidability of equality for [0, 1], we can branch on the values
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of f(n). If f(n) =0, then f is in the image of the obvious inclusion from 2'(Fin(n)),
and so g(f) is defined by induction. If f(n) = 1 then f = §(n) and so g(f) must be
g(n). Finally, if f(n) = p € (0,1), then f = 8(n) &, f’ for some f' : Z'(Fin(n)). By
induction we get g(f) and so can define g(f) = g(n) ®,2(f").

To prove that g is a homomorphism, suppose we are given f : 2'(Fin(n+ 1))
and h: Z'(Fin(n+1)). There are nine possible cases of f(n) and h(n) and we
just show the case where f(n) = ¢ and h(n) = r. In that case f = 6(n) @, f" and
h=6(n)®,H for some f' i : Z'(Fin(n+1)). From the axioms of convex algebras,
one can compute, given p,q,r : (0,1), probabilities p’,4’, " such that (a®,b) ®,
(c®rd)=(a®yc)®,y (b®rd) holds for all a,b,c,d in any convex algebra. We use
this to get

Using the induction step to conclude g(f’ @, h') = g(f") &, g(’) in the third equality.
O

Example 23. The isomorphism of Lemma 3.3.4 allows one to prove equations of
distributions by mapping to the right-hand side and using functional extensionality.
Consider, for example, the equation

(a Sp b) Sp (C ©p Cl) = (b@% C) G92]/)(1—1)) a,

where a,b,c : ZX for some X. In the case where X = Fin(3) and a = §(0),b =
0(1),c=8(2), we can prove this by noting that both the left and right-hand sides of the
equation correspond to the map f(0) = p?+ (1 —p)? =1+2p>—2p=1-2p(1—p),
f(1) = f(2) = p(1 — p). Finally, the case of general X, a, b, ¢ follows from applying
functoriality to the canonical map Fin(3) — 2X.

In constructive mathematics, a set is said to be Kuratowski-finite if it is the
codomain of a bijection from a set of the form Fin(n). The distributions of Z(A)
satisfy a similar property.

Lemma 3.3.5. Forany u: Z(A), there existsann: A, amap f : Fin(n) — A, and a
distribution v : 2(Fin(n)) such that @ = 2(f)(v)

Proof. This is proved by induction on u. In the case of d(a) take n = 1 and f
the constant map to a. In case of i @, i’ we get by induction n,n’, f : Fin(n) —
A, f :Fin(n') = A,v: Z(Fin(n)),v' : 2(Fin(n’)) such that u = 2(f)(v) and u’ =
PD(f)(V'). Set m = n+n' such that Fin(m) ~ Fin(n) + Fin(n’), define p = Z(inl)(v),
p’ = Z(inr)(V') and g : Fin(m) — A to be the copairing of f and f’. Then 2(g)(p &,
p)=ud,u O
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Distributions on sum types

The aim of this subsection is to prove that any distribution y : Z(A + B) on a sum type
can be written uniquely as a convex sum of two subdistributions: One on A and one on
B. In the classical setting where a distribution is a map with finite support this is trivial:
The two subdistributions are simply the normalised restrictions of the distribution map
to A and B respectively. In the type theoretic setting, the proof requires a bit more
work. We start by considering the special case where B is the unit type.

Lemma 3.3.6. The types Z(A+1) and 1+0,1) x DA are equivalent.

Proof (sketch). Using the classical definition of Z in terms of finite maps, the equiva-
lence Z(A+1) — 1+1[0,1) x ZA would map f to ~ if f(x) = 1 and otherwise to the
pair (f(%), #(*) -g) where g is the restriction of f to A. This isomorphism transports
the convex algebra structure on Z(A+ 1) to one on 1+ [0, 1) x ZA defined by the
following clauses.

*egp*é*
(g, ) ®px = (pg+ (1—p), 1)
*@, (rv) £ (p+(1—p)rVv)
(g, 1) ®p (V) = (pg+(1—p )ru@< pi-g) )V)

p(I—=q)+(1=p)(1-r)
To prove the lemma in type theory, it suffices to prove that the above equations define
a convex algebra structure on 1+ [0, 1) X ZA and that this is the free convex algebra
on A + 1. Proving that the axioms of convex algebras are satisfied is quite tedious,
but there is another approach: First note that the classical proof actually works in
the case of A = Fin(n) using Fin(n) 4+ 1 = Fin(n+ 1) and Lemma 3.3.4, then apply
Lemma 3.3.5 to show that any equation in 1+ [0,1) X ZA is the image of one in
1+10,1) x Z(Fin(n)) under some map Fin(n) — A. Since the equations hold in
1410,1) x Z(Fin(n)) they also hold in 1 4+[0,1) x Z(A). O

We can now prove the more general theorem.
Theorem 3.3.7. For all sets A and B, the map
P2(A)+2(B)+2(A) x (0,1) x 2(B) —» 2(A+B),

defined by

is an equivalence of types.
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Proof (sketch). Since the domain and codomain are both sets, it suffices to prove that
f is both surjective and injective.

To prove surjectivity, suppose i : Z(A + B). We show that u is in the image of f
by induction on u. The case of u being a Dirac distribution is easy. In the case of a
sum U @, v, one must consider the 9 cases of the induction hypotheses for y and v.
Here we just do the case where U = s @, g and v = V4 @, v, omitting the Z(inl)
and Y (inr). Let p/,q’,r’ be the unique elements in (0, 1) such that

(a®yb) @, (c®rd) = (ayc) @y (b&,d)
holds for all a, b, c,d. Then

(L4 ©g Va) ©p (LB ©p VB) = (la By 1) ) (VA 1 V)
—u®,v.

To prove injectivity, there are 8 cases to cover. Suppose for example that tis ©),
Up = VA @) Vg for a,va : Z(A) and up, v : Z(B). Then also

ta ©p 8(x) = Z(A+!)(1a Bp )
= @(AJH)(VA Dy VB)
= V4 EBq 5(*),

which via the equivalence of Lemma 3.3.6 allows us to conclude that p = g and
Us = va. Similarly, we can prove that g = vg. The other seven cases are similar. []

Alternatively, one can prove Theorem 3.3.7 directly by constructing a convex
algebra structure on the 3-fold sum. Proving Lemma 3.3.6 first reduces the number of
cases for associativity from 27 to 8.

3.4 Convex delay algebras

In this section, we define the guarded convex delay monad D* and the convex delay
monad D" modelling the combination of probabilistic choice and recursion. We first
recall the notion of delay algebra (sometimes called a lifting or a >*-algebra [91]) and
define a notion of convex delay algebra.

Definition 3.4.1 (Convex Delay Algebra). A (x-)delay algebra is a set A together
with a map step® : >¥A — A. A delay algebra homomorphism is a map f : A — B such
that f(step®(a)) = step*(A(a: k).f(a[e])) for all a : >¥A. A convex delay algebra
is a set A with both a delay algebra structure and a convex algebra structure, and a
homomorphism of these is a map respecting both structures.

The type L¥A is easily seen to be the free guarded delay algebra on a set A. Define
the guarded convex delay monad as the guarded recursive type

D*A =~ (A +55(D*A))



3.4. CONVEX DELAY ALGEBRAS &9

Again, this can be constructed formally as a fixed point on a universe (assuming A
lives in the same universe), but we shall not spell this out here. To see that this is a
monad, we show that it is a free convex delay algebra. First define the convex delay
algebra structure (step®, 6%, ®*) on D¥A as

step®(a) = 6(inr(a)) 6%a = 6(inl(a)) LS, V=pd,V

where the convex algebra structure on the right-hand sides of the equations above
refers to those of Z.

Proposition 3.4.2. D*A is the free convex delay algebra structure on A, for any set A.

The proof uses standard guarded recursion techniques. We include it in the paper
to illustrate this technique for readers less familiar with guarded recursion.

Proof. Suppose f : A — B and that B is a convex delay algebra. We define the
extension f : DXA — B by guarded recursion, so suppose we are given g : >X(D¥A —
B) and define

f(step®(a)) =step"(A(a:x).g ] a[al]))

f(8%(a)) = f(a)
fluepv)=flu)@, f(v)

Note that these cases define f by induction on & and +. Unfolding the guarded
recursive definition using (3.4) gives

[(step*(a)) = step*(A(a: k).f(ala]))

so that f is a homomorphism of convex delay algebras. For uniqueness, suppose g is
another homomorphism extending f. We show that g = f by guarded recursion and
function extensionality. So suppose we are given p : >X(I1(x : DXA)(g(a) = f(a))).
Then, for any a : >*(D*A), the term A (o : x).p [at](a[e]) proves

>(a:k).(g(alal]) = f(ala]))
which by (3.2) is equivalent to

A0t x).glalo]) = A(a: ) Flaor)

Then,

g(step®(a)) = step(A(a: x).g(alal))
= step(A(a: k). f(ala]))

= f(step®(a))

The rest of the proof that g(a) = f(a), for all a, then follows by HIT induction on
2. O
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We will often write ¢ >>=X f for f(¢) where f is the unique extension of f to a
convex delay algebra homomorphism.

Example 24. The type D*(X) can be thought of as a type of probabilistic processes

returning values in X. Define, for example, a geometric process with probability
p:(0,1) as geoy 0 where

geoy, : A — D*(A)
geokn £ (6%n) @, step(A(o: k).geok (n+1))
Note that this gives

geo'; = (6%0) @, step*(A(o: K).geo’;(l))

= (8%0) @, (step*A(0c: k). ((6%1) @), (step*A(at: k).geor (2))))

The modal delay >* in the definition of D*(X) prevents us from accessing values
computed later, and, e.g., compute probabilities of termination in n steps as elements
of [0, 1]. Such operations should instead be defined on the convex delay monad D"
defined as

D'A £ Vk.D*A

Proposition 3.4.3. If A is clock-irrelevant then DA is the final coalgebra for the
functor F(X) = 2(A+X).

Proof. We must show that F commutes with clock quantification, and this reduces
easily to showing that 2 commutes with clock quantification. The latter can be either
proved directly by using the same technique as for the similar result for the finite
powerset functor [72], or by referring to [85, Proposition 14], which states that any free
model monad for a theory with finite arities commutes with clock quantification. [l

Remark 25. From now on, whenever we look at a type DYA, we assume A to be
clock-irrelevant.

In particular, D'A ~ Z(A + D"A), and so carries a convex algebra structure
(8",@") as well as a map step” : D'A — DA defined by step’(x) = &(inr(x)). Define
also 87 : X — D"A as 8"x = §(inlx).

Example 26. The geometric process can be defined as an element of .4” — D"(_#") as
geo,n = AK.geoI'jn. This satisfies the equations

geo, = (6%0) EB\;, stepv(geop (1))
= (870) @) step”((8"1) @) step’(geo, (2)))

Lemma 3.4.4. DX carries a monad structure whose unit is 8" and where the Kleisli
extension f : D'(A) — DY(B) of a map f : A — D(B) satisfies

J(step’) = step”(f(x)) Fua),v)=f(u) @), F(v)

Proof. This is a consequence of [85, Lemma 16]. O
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Probability of termination

Unfolding the type equivalence D'A ~ Z(A 4 DA) we can define maps out of D'A
by cases. For example, we can define the probability of immediate termination
PTo: DA — [0,1], as:
PTo(8%) =1
PTo(step’d) =0
PTo(x&y) = p-PTo(x) + (1 —p)-PTo(y).
Likewise, we define a function run : D'A — DA that runs a computation for one step,
eliminating a single level of step” operations:
run(8%) = 8"a
run(step’d) = d
run(x@\;y) = ruanB\Z7 runy.
We can hence compute the probability of termination in n steps, by first running a

computation for n steps, and then computing the probability of immediate termination
of the result:

PT,(x) =PTo(run"x).
For example, running the geometric process for one step gives:
run(geo,0) = (5\70) D) ((5V1) ®p stepv(geop (2))),

s0 PT1(geo,0) =p+(1—p)p=2p—p*.

Rather than eliminating a full level of step’ operations with run, it is sometimes
useful to allow different branches to run for a different number of steps. We capture
this in the relation ~:

Definition 3.4.5. Define the relation ~»: DA — DA — Prop inductively by the
following rules

v~V Vi~ v Vi~V vy~ V)

V-~V stepvv ~ Vv Vo v \4 EB\;, Vs~ V| @\; V)

Remark 277. CCTT lacks higher inductive families as primitive, but the special case of
the ~ relation can be encoded by defining a fuelled version ~" by induction on n,
and existentially quantifying n.

The relation ~ is closely related to run.

Lemma 3.4.6. Let v, V' : D'A. Then:
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1. Foralln: /4, Vv~ run™v.
2. If v~ V' then, foralln: A, run™v ~ run"v/',
3. If v~ V' then there exists an n: A such that v/ ~ run*v.

Proof. The first two facts are proven by induction on 7, the last is proven by induction
on ~. O

Unlike run, the relation ~ can run different branches of a probabilistic computa-
tion for a different number of steps, as illustrated in the following example.
Example 28. Consider: v = (step’(8"a)) EBY, (step’(step”(8h))). Then run removes
step” operations from both branches.
run(v) = (8"a) &', (step”(8"D))
run?(v) = (8") EB\; (8"D)
run(v) = (8"a) @i (8"D) for n > 2.

As per Lemma 3.4.6, we have v ~ (run"v), for each n : .4/, as well as:

v~ (8'a) &) (step’(step”(5b)))
v~ (step’(8"a)) &), (step”(8b))
v~ (step’(87a)) &, (87D).
We will use this flexibility in running different branches for a different number of

steps in both our proofs and examples, such as in the proof of Lemma 3.7.8 and
Theorem 3.9.4.

We show two more useful properties of the relation ~. Firstly, the bind operation
preserves the ~ relation, which follows by an easy induction on ~-.

Lemma 3.4.7. If f : A — D"(B), and v, V' : D'A such that v ~ V'. Then also f(V)~»
).

And secondly, the probability of termination is monotone with respect to n, and
along ~:

Lemma 3.4.8. For v,v' : DA, we have:
1. Foralln,m: A such thatn <m: PT,(v) <PT,(v).
2. If v~ V' thenforalln: A : PT,(v) <PT,(V).

Proof. The first statement is by induction on n and case analysis for v, the second
statement by induction on n and ~. O
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x:o0€el FT FT n: N FIT
I'kx:o '-():1 I'n:Nat
'~ L:Nat I'-M:o I'N:o I'-M:Nat I'-M:Nat
I'+ifz(L,M,N): o I'-sucM : Nat I' pred M : Nat
I'-M:o '-M:z
I'FinlM:o+7 I'FinrM:o+7
I'-L:c+0’ Ix:ob-M:1T Iy:6'FN:1 I'M:o I'-N:7
I'tcase(L,x.M,y.N): 7 I'(M,N):oxt
'EM:oxz 'tM:oxt Ix:o)FkM:t
I'HfstM: o I'FsndM: 7 I'FlamxM:0— 7
I'FN:o—7 I'-M:o I'-M:tuX.t/X] '-M:uX.t
I'-NM:t I'foldM: uX.t 't unfoldM : t[uX.t/X]

I'-M:o I'N:o p:(0,1)
[+ choice’?(M,N) : o

Figure 3.2: Typing rules for FPCg

3.5 Probabilistic FPC

In this section we define the language FPCg, its typing rules and operational semantics
in CCTT. FPCy is the extension of simply typed lambda calculus with recursive types
and probabilistic choice. The typing rules of FPCg, are presented in Figure 3.2. In
typing judgements, I" is assumed to be a variable context and all types (which include
recursive types of the form uX.7) are closed.

We assume a given representation of terms and types of FPCg. For example,
these can be represented as inductive types with the notion of closedness defined as
decidable properties on these. We will also assume that terms are annotated with
enough types so that one can deduce the type of subterms from terms. This allows
the evaluation function and the denotational semantics to be defined by induction
on terms rather than typing judgement derivations. This also means that the typing
judgement I' - M : o is decidable. We write Ty for the type of closed types, and Tml;
for the type of terms M satistying I'- M : o, constructed as a subtype of the type of
all terms. When I" is empty we write simply Tm,. We write Val for the set of closed
values of type o, as captured by the grammar

V.W:=()|n|lamxM |foldV | (V,W) |inlV |inrV
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The operational semantics is given by a function eval® of type
eval®: {o: Ty} — Tmg,z — D*(Valy) (3.6)

associating to a term M an element of our representation of a distribution over syntactic
values, that is, an element of the free guarded convex delay algebra over Val;. The
corresponding element of the coinductive convex delay algebra can be defined as

eval(M) £ Ax.eval®(M) : D'(Valy)

The function eval® is defined by an outer guarded recursion and an inner induction
on terms, and the cases are given in Figure 3.3. The figure overloads names of some
term constructors to functions of values, e.g. inl : Val; — Val;, ; mapping V to inlV,
and pred,suc : Valy,, — Valy,, defined using Valy,, ~ .#". The figure also uses
matching by cases, using, for example, that all values of function type are of the form
lam x.M’ for some M.

In the cases of case(L,x.M,y.N) and M N the recursive calls are under a tick and
so can be justified by guarded recursion. This is necessary, because these cannot be
justified by induction on terms. Also, the case for unfold M introduces a computa-
tion step using step®. While this is not strictly necessary to define the operational
semantics, we introduce it to synchronise with the steps of the denotational semantics
defined in Section 3.6.

In FPCy we can define a fixpoint combinator as illustrated below:

Example 29. We define - Y : ((6 = 1) = (6 — 7)) — 6 — Tby Y £ lam f.lam z.e/(foldes)z,
where

er:(WX.X—>0—=1) 207
er £lam ylety = unfoldy in f(lam x.y'yx)
Here,y: uX.X -0 —1),y: (uX.(X 20— 1)) >0 — tand lam x.y'yx: 6 —

T.
Then, for any values -+ f: (60 - 17) >0 —tand-FV : 0,

eval“((Y£)(V)) = (A%)*(eval (£ (Y£)(V)))

where A¥ = (step® o next®).

Contextual Refinement

Two terms M, N are contextually equivalent if for any closing context C[—] of ground
type the terms C[M] and C[N] have the same observational behaviour. Here, the only
observable behaviour we consider is the probability of termination for programs of
type 1, which, for a closed term M should be the limit of the sequence PT,(eval M).
Since this limit can not be computed in finite time, we define contextual approximation
using finite approximations.
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eval®(V) £ ¥V
eval®(pred M)
eval®(sucM) = D*(suc)(eval*M)
eval®(inlM)
eval®(inrM)
0+ eval®(M)
n+ 1+ eval®(M)
eval®(fstM) £ (eval*M) >>=" A(V,W).8*V
eval®(snd M) £ (eval*M) >>=" A (V,W).8*W
eval®(M,N) £ eval*M >>=" AV.
eval*N >>= AW.6"(V,W)
eval®(case(L,x.M,y.N)) = eval*(L)
x {inIV — step®(Aa.eval*(M[V /x]))
inrV — step®(Aa.eval*(N[V /y]))
eval*(MN) £ eval®(M) >>=" A(lam x.M"). eval*(N)
>>=" AV.step®(A(a : k).eval*(M'[V /x]))
eval®(foldM) £ D*(fold ) (eval®(M))
eval®(unfold M) £ eval*M >>=" A (foldV).step* (A (a: k).8*V)
eval®(choice” (M,N)) £ (eval*M) @} (eval*N)

eval®(ifz(L,M,N)) = eval*L >>=" {

Figure 3.3: The evaluation function eval*.

Definition 3.5.1 (Contextual Refinement). Let ' M N : T be terms. We say that N
contextually refines M if for any closing context of unit type C: (I'-6) = (-F 1), and
for any m there exists an n such that PT,,(eval(C[M])) < PT,(eval(C[N])). In this
case, write M =<ct N. We say that M and N are contextually equivalent (M =ci N)
if M <cix N and N <cix M.

Definition 3.5.1 should be read as defining a predicate on M and N in CCTT, i.e.,
a function Tm5, — TmL — Prop using the universal and existential quantification in
Prop. The notion of closing context C: (I'- 6) = (- F 1) is a special case of a typing
judgement on contexts C : (I' 0) = (A 1) defined in a standard way. Note that
context C[—| may capture free variables in M.

Remark 30. Our definition of contextual refinement, being defined using finite ap-
proximations, only approximates the classical notion of contextual refinement, in the
sense that if, for example, C[M] terminates immediately and C[N] only terminates in
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the limit then they would have the same termination probability in the classical sense,
in the limit, but they are not related by finite approximations.

3.6 Denotational semantics

We now define a denotational semantics for FPCg. Specifically we define two
functions

[-]¢:Ty—U
[<]¥ :{T: Ctx} = {o: Ty} = TmL — [[]* — D¥[c]*

which interpret types and terms, respectively, and which are defined by the clauses in
Figure 3.4. The interpretation of types is defined by guarded recursion. Note that by
using guarded recursion, one can avoid having to define the denotation of open types.
The interpretation of terms is defined by induction on terms and uses the notation

d-e=d>>="Af.e >>=" Av.step(La.fv)

in the case of function application. This introduces a step, as does the elimination for
sum types, and unfolding of terms of recursive types. In the former two such cases,
the steps are not necessary for defining the semantics, but are introduced to align with
the steps used in the definition of eval®; this allows us to prove the soundness theorem
below. Before stating it, note that all syntactic values are interpreted as semantic
values in the sense that we can define a map

[-]V3%: {o: Ty} — Val, — [o]¥
satisfying [V]* = §%([V]V2"¥) for all V.

Theorem 3.6.1 (Soundness). For any well typed closed expression - = M : ¢ we have
that

D"([[—]]V""'*K) (eval*M) = [M]*

Example 31. Recall the fixed point operator Y from Example 29. Since eval®(Y fV) =
(step® o next®)*(eval*(f(Yf)V)) for any values f and V, we also get

[YSVI* = (step®onext)* ([F(Y /) V])

by Theorem 3.6.1. By a direct calculation similar to the one in Example 29 one can
also prove

[Yfa]is, = (step®onext*) ([F(Yf)x]i,) (3.7)

for any value f and semantic value v.
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Interpretation of types

[Nat] £ N (21
[o x 7]* £ [o]* x [t]* [o — ]* £ [o]* — D*[7]*
[o+7]* = [o]* +[<]* [ux.o]* = o*[t[uX.7/X]]*

Interpretation of terms

[OT5 = 8%(x)
)

[n] 2 5%(n
[sucM]5 £ D*(suc) ([[F M : Nat}]g)
[pred M]§ £ D (pred) ([[r - M : Nat] g)

0 = [M]§

[ifz(r,M,N)] 5 = [L]5 >>=" {n+1 — [NT5

llam xM]5 2 8% (A.(v: [oTy™).[MI5 )
[MN]S 2 [MI5 - [NIS
[(M,N)]S 2 [M]S >>="Av. ([[N]]g S>=K dw.(v, w))
[fst]s 2 D*(pry) (IMI})
D*(pry) (IM15)
[inl M]X £ D (in) ([[M]]g)
D*(inr) ([M];)

inlv — step*(Aa.[M]f ,..,)
inrv — step*(1a.[N]5 ,.,)

[sndM]5 £

[inrM]5 £ D" (inr
[case(L,x.M,y.N)]§ = [L]§ >>=" {

[fold MIE 2 D (next®)([M]%)
[unfold MK 2 [M]5 >>=* Av.step* (Ao (v]a]))
[choice” (M, N)] 5 =S Mo, [Ny

Figure 3.4: Denotational semantics for FPCg;.
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3.7 Couplings and Lifting relations

The definition of the logical relation between syntax and semantics requires lifting
a relation % : A — B — Prop between pairs of values to a relation Z" DA —
DB — Prop between pairs of computations. Note the asymmetry in the type of z".
The reason is that the logical relation will be defined by guarded recursion in the first
argument, while using arbitrarily deep unfoldings of the term on the right-hand side.
We dedicate this section to explaining this construction and its basic properties.

First recall the notion of coupling [16, 78], which provides a way to lift a relation
over A X B to a relation over ZA X ZB.

Definition 3.7.1. Let % : A — B — Prop, and let u : ZA, v : B be finite distributions.
An Z -coupling between U and Vv is a distribution on the total space of %, i.e.,
p:Z(X(a:A),(b:B).aZb), whose marginals are 1 and v:

Z(pri)(p)=u Z(pra)(p) =V,

where pry and pr, are the projection maps A &L A x B 22 B We write Cplgy(u,v)
for the type of Z -couplings between t and v.

A coupling is a joint distribution over A x B for which % always holds for any
pair of values sampled from it. The construction of ;L@K v generalizes this idea for
pairs of computations whose final values might become available at different times.
Recall that by Theorem 3.3.7 a distribution u : D¥A ~ 2(A +>*(D*A)) must be
either a distribution of values, one of delayed computations or a combination of the
two. The relation ,u?'( v should then hold if (1) the values available in 4 now can be
matched by v after possibly some computation steps, and (2) the delayed computation
part of u can be matched later, in a guarded recursive step. The matching of values
is done via a coupling, and the computation steps are interpreted using ~. In the
definition, we leave the inclusions Z(inl) and Z(inr) implicit and simply write, e.g.,
U : YA for the first case mentioned above.

Deﬁnitiin 3.7.2 (Lifting of Relations). Gilen arelation % : A — B — Prop we define
its lift Z" : DXA — D'B — Propas: u # “V if one of the following three options is
true:

1. u: 2A and there exists a V' : 2B such that v ~ v/, and an % -coupling p :
Cplg (1, V).

2. w: 2(>FDXA) and > (et k) (((C5(w)[a]) Z 5 v).

3. There exist u; : ZA, 1, : 2(>XD¥A), v, : ZB,v, : D'B, and p : (0,1), such
that u = u; &, 4p and v ~ v; @), v», and there exists a p : Cply (i1, v1), and
D(a: k) (§F (1) [0] Z" ).
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where {*:2(>¥D*XA) — >*D*A is defined as

¢*(8(x))
X (uopv)

lI>

Ala:x).¢5(u) [l @), 5 (v) [a]

We then define % : D'A — D"B — Prop as:

lI>

U ZV=VK(u[K]|Z" V).

The options (1) and (2) correspond to the degenerate cases where none of u is
delayed, and where all of u is delayed, respectively.

By the encoding of coinductive types using guarded recursion, one can prove the
following.

Lemma 3.7.3. i A is clock irrelevant, then % is the coinductive solution fo the
equation that L Z v if and only if one of the following:

1. W : DA and there exist V' : 2B such that v ~ V' and there exists an X% -coupling
p : Cplg (u,v").

2. w:2(DA) and run(u) Z v.

3. There exist Wy : DA,y : D(DA), vy : ZB,v, : D'B, and p : (0,1), such that
o=t Dp o and vV ~ V| ®), V2, and there exists a p : Cplg (11, v1), and
run(ia) Z va.

The definition of lifting is quite abstract, but in some concrete cases, such as when
the lifted relation is equality, it translates to a more concrete property of distribu-
tions. In this paper, we will use the following result, which uses liftings to compare
termination probabilities of distributions of unit type:

Lemma 3.7.4. Let i, v : D'1, and let eq; : 1 — 1 — Prop be the identity relation,
relating the unique element to itself. Then,

HEq Vv =Vn: A Im: N PT,(u) <PT,(v).

Proof (sketch). Note that 1 >~ Vx.1 so that Lemma 3.7.3 applies. The proof is first
by induction on 7, then by case analysis of peq; v. We show the induction step
n=n'+1, for case 3 of ueq; v. That is, there exist u; : Z1, up : 2(D"1) such that
U = W @, Uy, and there exist v; : Z1,v, : DI such that v ~ v, @ V2, and there
exists a p : Cpleq, (L1, V1), and moreover run () &q; vz.

Then PT,(u) = p+ (1 — p)PT,(run(uz)). From the induction hypothesis for
n' and the fact that run(,)€q; v2, we may conclude that there is an m’ such that
PT.w(run(i)) < PT,y(v2). From v ~ v; @, v, and Lemma 3.4.6(3), we know that
there is an m such that v| &, v, ~ run™v. Then by Lemma 3.4.8 we have:

PTim (V) =PT,(run™v)
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vVl uZ v vV uZ Y
TRZAR UZ" v
(step™puy) 5 (step*112) Z " v Wz v & v
step®(A(a:k).( [a]) @ (12 o)) Z" v (@), ) Z" (v &) v2)
aRb LRV  NabaRb—s fla)7" g(b)
(8%a) Z" (8"D) F(w) 7" g(v)

Figure 3.5: Reasoning principles for %

>PTw(vid,w)
=p+(1=p)PTw(v2)

= p+ (1= p)PTy(run(uz))
=PT,(n),

which is what we needed to show. O

In the remainder of this section, we will prove some useful reasoning principles
for Z" that we need for relating the syntax and semantics. These are summarized in
Figure 3.5, where the double bar indicates that the rule is bidirectional. First we show
that Z " is invariant with respect to ~»-reductions on its second argument.

Lemma3.7.5. If v~ V' then u Z" v ifandonlyifu Z" V'. In particular t Z" (step™v)
if and only if u Z"v.

Proof. Right to left is by transitivity of ~». For left to right, suppose u@x v. By
Lemma 3.4.6 there exists an n such that v/ ~» run™v, so it suffices to show that
,LL@K run”(v). This can be proven by guarded recursion. For example in the case of
item (3) of Definition 3.7.2, if v ~ v; @, v, then also run”(v) ~ run"(v| @, v) by
Lemma 3.4.6, and the latter equals v &, run"v; since Vv, is a distribution of values.
By guarded recursion we get

>X(o: ) (§F () (0] 2" run” (v2)
and the proof follows. O

The monads D and D" both distinguish between the order of steps and probabilis-
tic choice. However, these cannot be distinguished by any lifted relation.

Lemma 3.7.6. Let % : A — B — Prop.
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1. If Uy, o : >XD¥A, v : D'B then (step* ) S2 (step*in) Z " v iff step*(A(at:
K)-(tu [a) O (12[a]) Z" v

2. If it : DA and vy, v : D'B then L Z " step”(v, &Y v2) iff Lz (step”(v))) @Y,
(step’(v2))

Proof. The first statement follows from applying Definition 3.7.2(2). The second
statement follows from Lemma 3.7.5. [

Liftings are a useful technique to reason about computations because of the way
they interact with choice, and the monad structures of D¥ and D". For example, we
get the following.

Lemma 3.7.7. Let Z : A — B — Prop, then if i Z Vi and [, Z" V>, then also
—K

(W @) Z~ (Vi &), V).

Now we state and show the bind lemma, that allows us to sequence computations
related by liftings, and that will be crucial e.g. in the proof of the fundamental lemma
in the following section.

Lemma 3.7.8 (Bind Lemma). Let # : A — B — Propand . : A’ — B’ — Prop.
1. Ifa#b then (5%a) Z" (8"D).

2. Iff:A— D*A' and g : B — DB’ satisfy f(a) ?Kg(b) whenever a Z b, then
forall w: DXA and v : DB satisfying 4 Z " v, also f(,u)?’cg(v).

Proof (sketch). The first statement is trivial by taking p = d((a,b)). For the second
statement, suppose that ,LL@K v. By the definition of Z", there are three cases to
consider. We only show the first case here. The second case is by guarded recursion,
and the third case combines the proofs of the first and second cases.

Suppose U : ZA, v~ V', and p : Cply, (1, Vv"). We proceed by induction on p: If
p = &((a,b)) for some a : A and b : B such that aZ b, then f(u) = f(6%a) = f(a)
and g(v') = g(8%b) = g(b) are related in . by assumption.

If p=p1 &, P2, let ; = 2(pry)(p;) and v; £ Z(pr, ) (p;) fori = 1,2. By induction
F(u;) 7" 3(v;) and since

F() = flu ey ) = f(m) @) f(1e)
g(v) =g &), v2) =g(") &}, 8(v2)

the case follows from Lemma 3.7.7. O
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Value relation
p <EVal w <EVal p <EVal
n=<Nva <V (v,w) <Y (v,w) inly <5Y2"inlv
y j?’val Vv Yw, V.w jf,’val V —v(w) jf’Tm eval(M[V /x])
inry <52 inrv v <8V jam x.M

>(a:1).(v[0] <55y V)

Y jZ’}XiI foldV

Expression relation
K,Tm ;A K,Val K
M =5 d=u =g d

Figure 3.6: Logical Relation.

3.8 Relating syntax and semantics

This section defines two relations between syntax and semantics and shows how these
can be used for reasoning about contextual refinement for FPCg, terms. The relations
relate values and general computations respectively and have type

<kVal [e]* — Val, — Prop

<&Tm . DX[6]* — D"(Valy) — Prop

These are defined simultaneously by guarded recursion and induction on ¢. The cases
are given in Figure 3.6. Note that using Lemma 3.2.1 one can easily show that the
sets Val, are all clock-irrelevant, so that D"(Val,) is indeed a coinductive type as in
Proposition 3.4.3. As anticipated, the relation for computations is defined as a lifting
of the relation for values. In particular, this allows us to use the reasoning principles
associated with it (e.g., Lemmas 3.7.5,3.7.7 and 3.7.8) when using it in proofs and
examples.
We can define a relation for pairs of open terms as follows:

Definition 3.8.1. For M,N : Tm. we define

M=5TNE (Vp,S.(p <FVel §) — [m]x <5 eva|(zv[5]))

Here 8 is a closing substitution for I"and p : [I']* an environment. p j?val 0 denotes
that for every variable x of I the corresponding semantic and syntactic value in p and
0 are related.

We now state the fundamental lemma, that allows us to relate a term to itself.
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Lemma 3.8.2 (Fundamental Lemma). For all M € ng we have that M jg’r M.

Corollary 3.8.3. For terms M,N : Tm. we have that
by
(Vp : [TT*.(IM]5 = [N]p)) = M 25" N
This relation is a congruence, i.e., it is closed under the typing rules. In particular:

Lemma 3.8.4 (Congruence Lemma). For any terms M,N & Tml; and every context
C:(I'k0o)= (AF 1) we get that

M <E" N — c[M) <52 CIN]

For related terms of unit type, we can obtain an inequality between their proba-
bilities of termination (c.f. Lemma 3.8.5). First, we need the following preliminary
lemma:

Lemma 3.8.5. For any M,N € Tm; we have that
(V. [M]* <ET™ eval(N)) — (eval(M)eq; eval(N))

Proof. Assume that Vik.[M]* jf’Tm eval(N) and let k : clock be arbitrary. We
need to show that (eval®(M)eq,*eval(N)). Since Theorem 3.6.1 implies [M]*¥ =
DX[—]V2"% (eval®(M)) we directly get that DX ([—]V2"¥)(eval®(M)) j’f’Tm eval(N).
On the type 1, the function [[—]]Vé"*’( is an isomorphism, and, up to this, jl’(’val 18

simply eq;, so we conclude (eval(M)eq; eval(N)) as desired. O

From the results above, we derive our main theorem, stating that the logical
relation is sound with respect to contextual refinement:

Theorem 3.8.6. For any termsT'FM : 0 and ' N : 0 we have
(V.M <E" N) = M <ce N

Proof. Let M,N be arbitrary and Vk.M jg’r N. It remains to show that M <cy N.
Todoso,letC: (T o) = (- 1), then Lemma 3.8.4 implies that Vk.C[M] <{"" C[N]
which by definition is equivalent to Vx.[C[M]]* jf"Tm eval(C[N]). By Lemma 3.8.5
it follows that (eval(C[M])) eq; (eval(C[N])) and Lemma 3.7.4 completes the proof.

O

3.9 Examples
The following is an immediate consequence of Theorem 3.8.6.

Theorem 3.9.1. Let M and N be closed terms of the same type ©. If evalM ~> evalN,
then M =ci N.
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Proof. By Lemma3.7.5, u jg’val eval M if and only if u jg’val evalN. By Lemma 3.8.2

[M]* <kVal evalM, so [M]* <XVal eval N, and so by Theorem 3.8.6 also M <y N.
The other way is similar. 0

For example, since eval(Y fV) ~ eval(f(Yf)V), also YV =ci f(Yf) V. Simi-
larly, since

eval((lam x.M) V) = step”(eval(M[V /x])) ~ eval(M[V /x])
eval(unfold (foldV)) = step”(V) ~ V

for closed values V and lam x.M, we get the usual call-by-value 3 rules up to contex-
tual equivalence.

A hesitant identity function

For any type o and rational number 0 < p < 1 we define the hesitant identity function
hid, : 0 — o as

hid, £ lam z.((Y (hid})) 2) where

hid;, £ lam f.lam x.choice” (x, fx)

We will show that hid, =<ctx id. Note that the id < hidp is not true for the reason
mentioned in Remark 30. Since hid,, is a value, it suffices to show that

[hidp] V2" (v) <&Vel vy (3.8)

for all v,V satisfying v j?"a' V. We note the following lemma which can be proved

by a small calculation using Lemma 3.7.6. Recall the notation A¥ £ stepXonext®.

Lemma 3.9.2. For any value v and any distribution v, the statement [hid,] V2% (v) <KVal
U is equivalent to

(%) (((@%20)) @ ([hidpV* () <5¥" 1)

Using this, (3.8) can be proved using guarded recursion and Lemma 3.7.7.

A fair coin from an unfair coin

Define bool £ 1+ 1 referring to the elements as tt and ff. A coin is a program of the
form choice”(tt, ff) : bool for p: (0,1). A coin is called fair if p = %

Using a recursive procedure, we can encode a fair coin efairy () from an unfair
coin as follows.

efair, £ Y (efair,) : 1 — bool
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efair;, £ lam g.lam z.let x = choice” (tt, ff)
let y = choice”(tt, ff)
if egbool(x,y) then g(z) else x

Because this program only terminates in the limit, we cannot prove it equivalent
to a fair coin. Instead, we will prove it equivalent to a hesitant fair coin defined as
follows.

hfair, 2 (hidy(choice? (tt, ff)))

Theorem 3.9.3. efair,() is contextually equivalent to hfairy.p1_p).
Proof. Unfolding definitions shows that

eval(efairy())
~ (eval(efairp()) EBY] tt)@;/, (ff @Y) eval(efairy()))
= (tt Eng(l_p)(eval(efairp<>))) 692 (ff @Zp(l_p)(eval(efair,,())))

On the other hand, [hfairy.1_p)[* equals
A¥ ([hidz.p(1—p) ] (tt) BY [hida.pap) ]V (FF))

We show that [hfair,.5; ]]" -<E"T):" eval(efair,()) by guarded recursion. So as-

bool

sume >* ([[hfa|r2 o(1—p) ¥ =0 eval(efalrp<))). By the above and Lemmas 3.7.5

and 3.7.7 it suffices to show

([[h|d2p 1 F () <o (tt@;p(lfp)(eval(efairp<>)))>

and similarly for ff. By Lemmas 3.9.2 and 3.7.7, this reduces to showing >*(tt <EOE“

tt) and >*([hida.p1_p) ] ¥ (tt) <T™ eval(efairy())). The former of this follows from
Lemma 3.8.2 and the latter is the guarded recursion hypothesis. The other direction is
similar. 0

Relating hesitant identity functions

As an example of reasoning about programs with different convergence speeds, we
show the following.

Theorem 3.9.4. For any p,q € (0,1) the programs hid, and hidq are contextually
equivalent, as are hfair, and hfairg.

Proof (sketch). We show that [hid,]* -<§Irc'; eval(hidg). Since hid,, is a value, this
means showing [hid,]Va"*(v) <ng eval(hidq V) for all v,V such that y <EValy,
We prove this by guarded recursion. First, suppose p < g. Since eval(hidq V) is related
in the symmetric transitive closure of ~ to

V @] eval(hidgV) =V @, (V@,, , eval(hidg V)

—p



CHAPTER 3. MODELLING PROBABILISTIC FPC IN GUARDED TYPE
106 THEORY

by Lemma 3.9.2 it suffices to show (>¥)7(v <&V2' V) and

(%) ([[hidp]]val’K( ) <&V (v @q ,,eval(hld V)))

The latter follows from the guarded recursion hypothesis as well as [hid,]*(v) <KVal

V.
In the case of p > ¢, an easy induction on n shows that eval(hid, V) is related in
the transitive symmetric closure of ~ to
1% @ZZ La(1-q)t « (eval(hidgq V))

Since there exists an n such that p < ):Z;(l) g(1 —q)¥, the claim now follows as in the

previous case.
Since [hfair, ¥ = A¥([hidp]*(tt)) &% A*([hid,]*(ff)) and
2

eval(hfairg) = eval(hidq tt) @ eval(hid, ff)
2

the second statement follows from [hidp]* < <KTm eval(hidg). O

3.10 Related Work

We have discussed some related work in the Introduction and throughout the paper;
here we discuss additional related work.

In this paper, we have shown how to use synthetic guarded domain theory (SGDT)
to model FPCg. SGDT has been used in earlier work to model PCF [91], a call-by-
name variant of FPC [82], FPC with general references [102, 103], untyped lambda
calculus with nondeterminism [84], and guarded interaction trees [52]. Thus the
key new challenge addressed in this paper is the modelling of probabilistic choice,
in combination with recursion, which led us to introduce (guarded) convex delay
algebras.

Our logical relation between denotational semantics and operational semantics
is inspired by the earlier work on nondeterminism in [84]. Here we use the relation
to reason about contextual refinement whereas in op. cit. it is used for proving
congruence of an applicative simulation relation defined on operational semantics.

Applicative bisimulation for a probabilistic, call-by-value version of PCF is studied
in [41]. This work defines an approximation-based operational semantics, where a
term evaluates to a family of finite distributions over values, each element of the
family corresponding to the values observed after a given finite number of steps. This
is reminiscent of our semantics, although in op. cit. the approximation semantics is
then used to define a limit semantics using suprema.

Probabilistic couplings and liftings have been a popular technique in recent years
to reason about probabilistic programs [16, 17], since they provide a compositional
way to lift relations from base types to distributions over those types. To the best of
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our knowledge, our presentation is the first that uses constructive mathematics in the
definition of couplings and the proofs of their properties, e.g. the bind lemma. Our
definition of couplings is also asymmetric to account for the fact that the distribution
on the left uses guarded recursion. This is similar in spirit to the left-partial coupling
definition of [59], where asymmetry is used to account for step indexing.

In this paper, we model the probabilistic effects of FPCy using guarded / co-
inductive types. In spirit, this is similar to how effects are being modeled in both
coinductive and guarded interaction trees [52, 112]. Coinductive interaction trees are
useful for giving denotational semantics for first-order programs and are defined using
ordinary type theory, whereas guarded interaction trees can also be applied to give
denotational semantics for higher-order programs, but are defined using a fragment
of guarded type theory. Interaction trees have recently been extended to account for
nondeterminism [35] but, to the best of our knowledge, interaction trees have so far
not been extended to account for probabilistic effects.

3.11 Conclusion and Future Work

We have developed a notion of (guarded) convex delay algebras and shown how to use
it to define and relate operational and denotational semantics for FPCg in guarded
type theory. To the best of our knowledge, this is the first constructive type theoretic
account of the semantics of FPCg,.

Future work includes (1) combining and extending the present work with the
account of nondeterminism in [84] and to compare the resulting model with the recent
classically defined operationally-based logical relation in [7]; and (2) to extend the
logical relation to account for approximate relational reasoning (up to a small €),
which would allow us, e.g., to show that constant functions are refinements of their
approximations.






Chapter 4

mitten : a flexible multimodal
proof assistant

Abstract

Recently, there has been a growing interest in type theories which include
modalities, unary type constructors which need not commute with substitution.
Here we focus on MTT [58], a general modal type theory which can internalize
arbitrary collections of (dependent) right adjoints [25]. These modalities are
specified by mode theories [75], 2-categories whose objects corresponds to
modes, morphisms to modalities, and 2-cells to natural transformations between
modalities. We contribute a defunctionalized NbE algorithm which reduces the
type-checking problem for MTT to deciding the word problem for the mode
theory. The algorithm is restricted to the class of preordered mode theories—
mode theories with at most one 2-cell between any pair of modalities. Crucially,
the normalization algorithm does not depend on the particulars of the mode
theory and can be applied without change to any preordered collection of modal-
ities. Furthermore, we specify a bidirectional syntax for MTT together with a
type-checking algorithm. We further contribute mitten, a flexible experimental
proof assistant implementing these algorithms which supports all decidable
preordered mode theories without alteration.

4.1 Introduction

A fundamental benefit of using type theory is the possibility of working within a proof
assistant, which can check and even aid in the construction of complex theorems.
Implementing a proof assistant, however, is a highly nontrivial task. In addition
to a solid theoretical foundation for the particular type theory, numerous practical
implementation issues must be addressed.

Recently, interest has gathered around type theories with modalities, unary type
constructors which need not commute with substitution. Unfortunately, the situation
for modal type theories is even more fraught; the theory for modalities is poorly

109
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understood in general, and it is unknown whether standard implementation techniques
extend to support them.

Despite these challenges, mainstream proof assistants have begun to experiment
with modalities [109], but these implementations are costly and only apply to a
particular modal type theory. In practice, a type theorist may use a particular collection
of modalities for only one proof or construction and it is impractical to invest in a
specialized modal proof assistant each time. This churn has pushed type theorists to
define general modal type theories which can be instantiated to a variety of modal
situations [58, 76].

We choose to focus on MTT [58], a general modal type theory which can internal-
ize an arbitrary collection of modalities so long as they behave like right adjoints [25].
Despite limiting consideration to right adjoints, MTT can be used to model a variety
of existing modal type theories including calculi for guarded recursion, internalized
parametricity, and axiomatic cohesion. Better still, MTT has a robustly developed
metatheory [54, 58] which applies irrespective of the chosen modalities. An imple-
mentation of MTT could therefore conceivably be designed to allow the user to freely
change the collection of modalities without re-implementing the entire proof assis-
tant each time. This, in turn, enables the kind of specialized modal proof assistants
previously impractical for one-off modal type theories.

MTT: a general modal type theory

As mentioned, MTT can be instantiated with a collection of modalities. More pre-
cisely, MTT is parameterized by a mode theory, a strict 2-category which describes
a modal situation. Intuitively, objects (m,n,0) of this mode theory represent distinct
type theories which are then connected by 1-cells (i, v, &) which describe the modali-
ties. The categorical structure ensures that modalities compose and that there is an
identity modality. In order to describe more intricate connections and structure, the
mode theory also contains 2-cells (o, ). A 2-cell induces a ‘natural transformation’
between modalities. By carefully choosing 2-cells we can force a modality to e.g.
become a comonad, a monad, or an adjoint.

To give a paradigmatic example, consider the mode theory .# with a single object
m, a single non-identity morphism y : m — m and a 2-cell € : 4 — id,, subject to the
equations o = (4 and €xu = €. This description defines .# as a 2-category
with a strictly idempotent comonad u. Instantiating MTT with this mode theory
yields a modality (i | —) together with definable operations shaping (i | —) into an
idempotent comonad:

extracty : (11| A) — A dupy : (p[A) = (u | (n]A))

Even this simple modal type theory is quite useful; it can serve as a replacement for
the experimental version of Agda [109] used to formalize a construction of univalent
universes [77].

Given the generality, it is natural to wonder whether instantiating MTT yields a
calculus which is feasible to work with in practice. Fortunately, prior Fitch-style type
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theories have been highly workable [14, 15, 108] and this trend has continued with
MTT [54, 56, 58].

From theory to practice

Unfortunately, converting the theoretical guarantee of normalization into an executable
program is not a small step. A first obstacle is the syntax of MTT itself: prior work
has exclusively considered an algebraic presentation of the syntax as a generalized
algebraic theory. While mathematically elegant, a proof assistant requires a more
streamlined and ergonomic syntax. Once a more convenient syntax has been designed,
one must adapt the normalization proof to a normalization algorithm. Normalization
is proven by a sophisticated gluing argument, and while the proof is reminiscent of
normalization-by-evaluation [3] it remains to extract such an algorithm. Finally, the
normalization algorithm does not give any insight into representing common mode
theories or solving their word problems.

Restriction to preordered mode theories Many difficulties flow not from the
modalities per se, but from the 2-cells of our mode theory, which induce a new primi-
tive type of substitutions. During normalization these key substitutions accumulate at
variables. Unfortunately, they disrupt a crucial property of modern NbE algorithms:
variables can no longer be presented in a way that is invariant under weakening.
Therefore, we restrict our attention to mode theories that are preordered, with at most
one 2-cell between any pair of modalities.

This allows us to present a syntax that never talks about 2-cells and relies entirely
on the elaboration procedure to insert and check 2-cells. In addition to avoiding
annotations, this simplifies the normalization algorithm since the troublesome key
substitutions trivialize.

Although such a restriction does preclude some examples, preordered mode
theories are still expressive enough to model guarded recursion together with an
everything now modality similar to the one introduced by Clousten et al. [36].

A surface syntax for MTT As a generalized algebraic theory, MTT is presented
with explicit substitutions and fully annotated connectives [58]. In order to avoid this
bureaucracy, we introduce a bidirectional version of MTT which allows a user of
mitten to omit almost all type annotations [40].

Normalization-by-evaluation The normalization proof for MTT follows the struc-
ture of a normalization-by-evaluation proof. Rather than fixing a rewriting system, a
term is evaluated into a carefully chosen semantics equipped with a quotation function
reifying an element of the semantic domain to a normal form. The entire normalization
function is then a round-trip from syntax to semantics and then back to normal forms.
While the proof of normalization uses a traditional denotational model for a semantic
domain, this approach is unsuitable for implementation.
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Instead mitten follows the literature on normalization-by-evaluation and uses a
defunctionalized and syntactic semantic domain [3]. This approach has previously
been adapted to work with particular a modal type theories [57, 63].

Mode theories As mentioned previously, normalization for MTT does not imme-
diately imply the decidability of type equality. Terms (and therefore types) mention
both 1- and 2-cells from the mode theory, and deciding the mode theory is a necessary
precondition for deciding type equality. Moreover, deciding the equality of 1- and
2-cells, even in a finitely presented 2-category, is well-known to be undecidable.! For
us, this situation is slightly improved since for preordered mode theories at least 2-cell
equality is trivial. Unfortunately, the undecidability of 1-cell equality remains. Special
attention is therefore necessary for each mode theory to ensure that the normalization
algorithm for MTT is sufficient to yield a type-checker.

While this rules out a truly generic proof assistant for MT T which works regardless
of the choice of mode theory, mitten shows that the best theoretically possible result
is obtainable. We implement mitten to be parameterized by a module describing the
mode theory so that the type-checker relies only on the existence of such a decision
procedure. In particular, there is no need to alter the entire proof assistant when
changing the mode theory; only a new mode theory module is necessary. Crucially,
while the user must write a small amount of code, no specialized knowledge of proof
assistants is required.

We have implemented several mode theories commonly used with MTT in this
way, showing that in practice decidability is no real obstacle. For instance, we have
configured mitten to support guarded recursion with a combination of two modalities
0O and ». This is the first proof assistant to support this combination of modalities.

Contributions

We contribute a bidirectional syntax for MTT (restricted to preordered mode theories)
together with a defunctionalized normalization-by-evaluation algorithm which reduces
the type-checking problem to deciding the word problem for the mode theory. We
have put these results into practice with mitten, a prototype implementation of MTT
based on this algorithm. mitten also supports the replacement of the underlying
mode theory with minimal alterations, allowing a user to construct specialized proof
assistants for modal type theories by merely supplying a single module specifying the
mode theory together with equality functions for 0-, 1-, and 2-cells.

In Section 4.2 we provide a guided tour of MTT. This section also introduces
the bidirectional syntax for MTT and shows how even in this general setting the
modalities introduce minimal overhead. Section 4.3 introduces the defunctionalized
normalization algorithm for non-specialists and Sections 4.4 and 4.5 completes the
description of the core components of mitten by describing the type-checking al-

I'The word problem is well-known to be undecidable for finitely presented groups which can be
realized as finitely-presented categories and therefore locally discrete finitely-presentable 2-categories.
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gorithm. In so doing, we also describe the novel interface mitten uses to represent
modalities and show how this interface is implemented.

In Section 4.6 we discuss the realization of mode theories with a representative
example: guarded recursion. As previously mentioned, this is the first proof assistant
able to support this pair of modalities simultaneously.

4.2 A surface syntax for MTT

Prior to specifying a type-checking algorithm for MT T, we must specify the surface
syntax for the language. This question is not satisfactorily addressed in the prior
work on MTT; the generalized algebraic version of syntax is too verbose to be
workable, but the informal pen-and-paper syntax which omits all type annotations
cannot be type-checked. Our surface syntax is formulated with an eye towards the
type-checking algorithm we will eventually use: a version of Coquand’s semantic
type-checker [40]. In particular, we will employ a bidirectional surface syntax which
minimizes the number of mandatory annotations while still ensuring the decidability
of type-checking.

To a first approximation, the surface syntax is divided into two components:
checkable and synthesizable terms. Checkable terms include introduction forms while
synthesizable terms include elimination forms and variables. By carefully controlling
where checkable and synthesizable terms are used, we thereby avoid unnecessary type
annotations.

We present the grammar for surface syntax in Section 4.2. While we will defer
presenting the actual type-checking algorithm until Section 4.5, in order to make this
account as self-contained as possible we provide an example-based introduction to
MTT in Section 4.2.

Bidirectional Syntax

As previously mentioned, MTT is parameterized by a mode theory [75] which speci-
fies the modes and modalities of the type theory. We begin by more precisely defining
a mode theory in our situation.

Definition 4.2.1. A mode theory is a category whose objects m,n,0 we refer to as
modes and whose morphisms U, v we refer to as modalities. We further require that
each hom-set be equipped with a pre-order < compatible with composition. Explicitly,
given U, v € Hom(m,n) and p,6 € Hom(n,0) with g < v and p < 6 we require
pou<oov.

Equivalently, a mode theory is a preorder-enriched category.

For the remainder of this subsection, we fix a mode theory .#. The grammar of
the surface syntax is presented below:
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(Checkable) AMN,C := R|(u|A)—B|AxB | Nat |U|A(M)|(M,N)
| zero | succ(M) | (u | A) | mody (M)
| Ids(M,N) | refly
(Synthesizable) R,S = M:A|q|R(M)y |pri(R) | pra(R)
| lety mody(_ )< Rin M over C
‘ reC(C7Mzer07Msuc,N> ‘ J(CacreflaM)

As mentioned previously, checkable terms consist essentially of introduction forms
while synthesizable terms are elimination principles. For instance, the presentation of
dependent sums above includes A xB and (M,N) as checkable terms while pr;(R) is
synthesizable.

By stratifying terms in this way we ensure that annotations are required exactly
where ambiguity would arise during type-checking. For instance, this stratification
prevents unannotated -redexes from occurring. Consider again the case of dependent
sums. In order to apply a projection to an element (M, N) of dependent sum type, the
element must be synthesizable. However, since (M, N) is checkable, the only way to
represent pr((M,N)) in this discipline is to promote (M, N) to a synthesizable term
by annotating it: (M,N) : AxXB.

Remark 32. In particular, terms in 3-normal and n-long form fit into this surface
syntax with no additional annotations. Consequently, the normalization theorem for
MTT [54] ensures that any term is convertible to one expressible in the surface syntax.

Remark 33. We have made a concession to simplicity and used de Bruijn indices
for variables rather than names. This makes the normalization and type-checking
algorithms far easier to specify and it is well-known how to pass between syntax with
named variables and de Bruijn indices. We will use named variables in examples
e.g., let, mody(y) <~ R in M over x.Cor (i | x : A) — B for modal elimination and
dependent products respectively.

The surface syntax by example

We will crystallize when a term in the surface syntax is well-formed in Section 4.5
when presenting the type-checking algorithm. In order to cultivate intuition for the
theory before this, we will now work through several examples in the language.

Remark 34. We refer the reader to Gratzer et al. [58] for a long form explanation of
MTT.

MTT with one mode and one generating modality

Consider MTT instantiated with the mode theory with one mode m and one modality
¢ with no non-trivial equations or inequalities. Then each modality u is uniquely
expressible as ¢”, the composition of n copies of ¢. Just as in ordinary type theory,
MTT then has dependent sums, natural numbers, identity types, and their behavior is
unchanged.
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Unlike in ordinary type theory, each variable is annotated with a modality x :
(u|A) (pronounced x : A annotated by ). Variables annotated with the identity
modality behave like ‘ordinary’ variables; they can be used freely when working
with e.g. natural numbers. Conversely, variables annotated with ¢"*! cannot be used
except in the construction of an element the modal type (¢ | A).

An element of (¢ | A) is introduced by mody (M), where M is an element of A,
subject to the restriction that M may only use variables with annotation ¢"*!. More
concretely, when we construct M we (1) lose access to all id-annotated variables and
(2) replace a variable x : (¢"*! | A) with x: (¢" | A). As only variables with identity
annotation can be used with the variable rule, this means that within mody (—) we may
use ¢-annotated variables freely.

For instance, in the context with variables xj : (id | Nat), x; : (¢ | Nat), and
x2: (¢ 0@ | Nat) the following programs are well-typed:

xo : Nat mody (x1) : (¢ | Nat) mody (mody (x2)) : (¢ | (¢ | Nat))

On the other hand, both x; : Nat and mody(xo) : (¢ | Nat) are ill-typed as the
annotations on variables do not match their usage.

This idea generalizes: to construct an element of (¢* | A) we use mod (M) where
M : A in a context where we have (1) lost access to variables with annotations ¢’
where [ < k (2) replaced each variable x : (¢""* | A) with x: (¢" | A). In the same
context as the example above therefore, modgog(x2) : (¢ o ¢ | Nat). We refer to the
modification to the context given by (1) and (2) as ¢*-restricting the context.

Let us now consider the modal function type (¢t | A) — B. Anelementof (i |A) — B
is precisely a function which binds a variable of type A with annotation u. Application
for these function types R(M),, takes p into account in the following way: R(M), : B
if (1) R has type (1 | A) — B and (2) after u-restricting the context, M has type A.

One feature remains to be discussed, the elimination principle for modal types:

lety mody(y) — R in M over x.C

To a first approximation, this principle allows us to replace a variable x: (v | (1 | A))
with y : (vopu | A). More precisely, let, mody(y) <~ R in M over x.C : C[M /x] if
(1) after binding x : (v | (| A)), C is a type (2) after v-restricting the context M has
type (i | A) and (3) after binding y : (vou | A), R has type C[mod,, (y)/x].

Multiple modalities

The above approach for ¢-restriction based on decrementing modal annotations
provides a simple mental model for MTT. To extend these ideas to more complex
mode theories, however, a more refined approach is necessary. We begin by discussing
a small adjustment to the concepts introduced previously.

Rather than eagerly decrementing the annotation on a variable when we restrict
a context, we instead lazily perform this update. Accordingly, we annotate each
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variable with a pair of modalities and write x :;, /, A for a y-annotated variable with a
v-restriction lazily performed upon it. The rule for applying a restriction to a variable
now becomes more uniform: to restrict x :, /, A by & we replace it with x : w/vot A
The variable rule applies only when the fraction ‘cancels’ i.e., x 1y, AF x:A.

For the mode theory under consideration, this is merely a change in notation as the
behavior of the annotations of x :4: /4« A - x : A is entirely determined by the difference
| — k. We therefore introduce the following mode theory to illustrate the need for the
‘lazy’ approach:

Definition 4.2.2. Denote by . the mode theory with one mode and two generating
modalities ¥ and ¢. The preorder is generated by the inequality yo y < ¢.

This mode theory introduces two new concepts simultaneously: multiple modali-
ties and non-trivial inequalities between those modalities. Fortunately, to refine the
idea explained above of p-restricting a context, only one rule must be altered: To ac-
count for the preorder on modalities, we relax the variable rule slightly: x:;, ,, A x: A
if p < v. With this modified rule, we can construct a coercion (yo y | A) — (¢ | A):

coerce = Ax. letig modyoy(y) < x inmody(y) over _. (¢ | A)

Multiple modes and multiple modalities

Only one generalization is required at this point to provide a complete description
of MTT: multiple modes. While thus far we have confined ourselves to discussing
multiple modalities on one mode, we are allowed to have multiple modes in MTT as
well. Consider the following mode theory:

Definition 4.2.3. .75 is the mode theory equipped with two modes & and / whose
modalities are generated by ¢ : k — k and W, & : k — . The preorder on hom-sets are
generated by the inequalities id; < ¢ and & < y:

¢Ck/wx/
w

We note that now .5 now has two different modes k and /. Each mode in MTT
gives rise to a separate type theory so that we must check not only that some term has
a type, but also that the term, type, and all variables in scope live at the correct mode.

All of the standard constructions do not change the mode; thus, e.g., succ(n) will
be well-typed at type Nat at mode m just when the same is true of n. We will notate
“M has type A at mode m” by M : A @ m. Prior to discussing the two type constructors
involving modalities, we must explain what it means for a context to be well-formed
at mode m.

Definition 4.2.4. A variable declaration x :;, /, A is well-formed at mode m if the
following hold:
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1. u:n—o0and v :m—: o for some o.

2. Ais atype at mode n.

The context is well-formed at mode m if all variables in scope are well-formed at
mode m.

Example 35. Restricting a well-formed context at m by u : n— m yields a well-
formed context in mode 7.

It is worth emphasizing the contravariant nature of the restriction v in x 1,/ A.
This is crucial for the rules governing (i | A). The type (u | A) is well-formed at
mode m if (1) u : n— m for some n and (2) after u-restricting the context, A is
well-formed at mode n. In particular, (1 | —) sends types at mode n to types at mode
m so restriction must move contexts contravariantly from mode n to mode m. We
remark, however, that aside from the additional checks to ensure that types are well-
moded, this is the same rule as given previously. Likewise, the rules for introduction
and elimination along with all of those for modal dependent products are merely
instrumented with additional checks to ensure that types and terms live at the correct
mode.

We conclude with a few examples.

Example 36. Ax.x: (& |A) — (y|A) @1 is well typed. In particular, since & < y we
conclude x:¢ )y, AFx:A@k.

Example 37. We will define a function of the following type:

[y (o[Nat)) = (yog¢ |Nat) @/

We begin by binding a variable x :iq/ig (¥ | (¢ | Nat)) so it now suffices to con-
struct a term (Yo ¢ | Nat) @ [. To this end, we use the modal elimination principle
on x to obtain a new variable y :yiq (¢ | Nat). Applying modal elimination to y, we
obtain z :y.g/iq Nat.

We still wish to construct a term (y o ¢ | Nat). Applying the modal introduction
rule, we Yo ¢ restrict the context (so y becomes y :yog /yop Nat). Our goal is then
Nat, so y suffices.

All told, the term final term is as follows:

Ax.

letig, mody(y) in

= X i
lety mody(z) =y in
modyop (2)
over (yo¢ | Nat)

over (Yo ¢ | Nat)
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4.3 Normalization by Evaluation

A crucial ingredient of any type checker is a procedure for determining when two
types are equal. In mitten, we have implemented this decision procedure through a
normalization algorithm: a function which sends a term to a corresponding normal
form. The precise definition of normal form is then less important than the fact that
definitional equality for normal forms is straightforward to decide. Writing NfTerms
for the collection of normal forms, we view our normalization algorithm as a function:

normr : Syntax — NfTerms

Merely having a function from syntax to normal forms, however, is insufficient to
decide definitional equality. Accordingly, we are interested in normalization functions
which satisfy the following properties:

Definition 4.3.1. A normalization function is called complete if ' A = B @ m implies
normr(A) = normr(B)

Definition 4.3.2. A normalization function is sound if ' A @ m implies I' - normr(A) =
A@m.

Completeness states that normalization lifts to a function on syntax quotiented by
definitional equality while soundness states that this induced function has a section.
Taken together, therefore, we have the following:

Corollary 4.3.3. Let normr be sound and complete then I' = A = B @ m if and only
if normr(A) = normr(B).

The traditional approach to constructing a normalization function is to specify an
untyped rewriting system which directs and presents the equational theory. Equality
of terms is then convertibility within this rewriting system so that strong normalization
ensures both soundness and completeness. This approach, however, turns out to be
unworkable for more elaborate dependent type theories with type-directed rules. One
possible approach is to can refine a rewriting system to be type-directed system which—
in conjunction with other mechanisms—can decide conversion directly [5], we adopt
an entirely different approach to associating terms to normal forms: normalization by
evaluation (NbE).

Normalization by evaluation breaks the process of normalizing a term into two
distinct phases: evaluation and quotation. The first evaluates a term into a semantic
domain. For our purposes, the semantic domain is simply a more restrictive form
of syntax which disallows f-reducible terms. The process of evaluation boils down
to placing a term in -normal form while crucially retaining various pieces of type
information for the next phase. The second phase, quotation, takes an element of
the semantic domain and guofes it back to syntax. In the process it 7 expands terms
wherever possible. As a result, the full loop of evaluation and quotation sends a term
to its B-normal n-long form as required. Figure 4.1 gives a graphical overview of the
process.
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We describe the semantic domain in detail in Section 4.3. The actual algorithm is
described over the following three sections (Section 4.3). Our algorithm is inspired by
Gratzer’s gluing-based argument for normalization [54] and we conjecture that this
link can be made sufficiently precise to establish the soundness and completeness of
our code.

Remark 38. The version of normalization-by-evaluation we use is robust enough to
require only local modifications in order to accommodate modal types. Accordingly,
we focus primarily on connectives like dependent products and modal types whose
behavior is impacted and refer the reader to, e.g., Abel [3] for a description how the
algorithm works on the remaining connectives.

Val
# r
e NfVal Neutrals AEr— Level
quo(—), quo(—),
Syntax T) NfTerms e NeTm —a Index

Figure 4.1: Overview of the algorithm inspired by [57] and [3].

The Domain

We start by a brief overview of the semantic domains described in Fig. 4.1:

(values) Au = tMe|A(f) | (u]A) — B|zero|suc(v) | Nat
[ (v1,v2) [AXB | (1] A) | mod (1)
(neutrals) e s= i | applu](e,d) | pri(e) | prae)
| letmod(u, v,C,c,A,e) | rec(C,u,v,e)
(environments) p = -|pw
(closures) C,f == clo(M,p)
(normals) d = Ay

Informally, neutral forms are generated by variables and elimination forms stuck
on other neutrals. To a first approximation, a neutral is a chain of eliminations which
are stuck on a variable. On the other hand, values—the codomain of the evaluation
function—are primarily generated by introduction forms. In particular, there are no
elimination forms directly available on values and there is no uniform way to turn a
value into a neutral form. Consequently, B-reducible terms cannot be expressed in
this grammar. One can, however, lift a neutral into a value after annotating the neutral
form with its type. Tersely, values are -short but not necessarily 1-long.
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A defining aspect of our approach to NbE is the handling of open terms. Rather
than directly evaluating under a binder, when we reach, e.g., a lambda, we suspend the
computation and store the intermediate result in a closure. The evaluation is resumed
as soon as further information is gathered. In the case of a function, for instance, the
evaluation of the body is resumed only after the function is applied. A closure is a
combination of the term being evaluated and “the state of the evaluation algorithm.”
The latter amounts to the environment of variables which is reified and stored in the
closure alongside the term.

Normal forms have only one constructor, reification. Values are lifted to normals
by annotating them with a type. This type annotation is used during the quotation
process in Section 4.3 in order to deal with the n-laws.

We emphasize that while terms use De Bruijn indices, neutral forms use De Bruijn
levels to represent variables. This small maneuver ensures that values, neutral forms,
and normal forms are silently weakened and we will capitalize on this fact throughout
our algorithm [3].

Evaluation

Evaluation is the procedure of interpreting syntax into the semantic domains, specifi-
cally values. At a high-level, this amounts to -reducing all terms (recall S-reducible
terms cannot be represented as values). The presence of variables, however, causes
some elimination forms to become stuck. These stuck terms are evaluated into neutrals
and annotated with a type.

We single out a few interesting cases of the evaluation algorithm shown in Fig-
ure 4.2.

‘ [_] :Syntax — Env — Val ‘

EVAL/VAR EVAL/PI EVAL/MODIFY
pli)=v [A], = 40 [A]p =40
[ailp =v [(]A) = B, = (u|Ao) — clo(B,p) [ [A)]p = (u [ Ao)

EVAL/MOD EVAL/APP

[M], = Mlp=u  [N]p=v
[mody (M)], = mody(v) [M(N)u]p = app(u,v)
EVAL/LETMOD
[M], =v

[lety mody(_) <=M in N :A], = letmod,.,(clo(A,p),clo(N,p),v)

(p-1)(0) = v (p)(i+1)=p(i)

Figure 4.2: Evaluation function, selected cases.
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The work of evaluation is done around eliminators. Therefore, we single these
cases out and define ‘helper’ functions for this portion of the algorithm. The interesting
new cases are letmod and app, but generally for every syntax elimination form we
define a suggestively named function that automatically beta-reduces eliminators
applied to an introduction form, or returns a neutral and annotates it with its type.

app(u,v) : Val proj;(v) : Val letmod,., (C,c,v) : Val J(C,crefi,p) : Val

C=A(C)
inst(clo(M,p),v) = [[M]]PJ’ app(u,v) = inst(C,v)

u="1%e  Ag=(u|A)—C  inst(C,v)=B
app(u,v) =17 applu] (e, 1" v)

v=mod, (V') inst(c,V) =u

letmod,., (C,c,v) =u

v="1%¢  Ag=(u|A)  inst(C,t ") =B
letmod, ., (C,c,v) = 1¥letmod(v,u,C,c,A,e)

As mentioned previously, we use closures to represent syntax that cannot be
evaluated in the present environment. Once we have found the value to complete
the environment, we instantiate the closure with it and continue the evaluation in the
extended environment.

Quotation

Quotation is the process of turning normals into terms. We will ensure that the results
of quotation are always normal form terms, that is, B-short and 1n-long terms.

To account for the fact that normal forms mention values and neutral forms,
quotation is split into three mutually recursive functions. Quotation must perform
n-expansion and is therefore type-directed. Accordingly, while we have a quotation
procedure which applies to values, this portion of the algorithm can only be used for
quoting types where there is no associated 1n-expansions. All three of these functions
take a natural number in addition to the actual term being quoted. This number
represents the next available De Bruijn level for a free variable; it is used to quote
terms with binders.

We present the novel cases of quotation of normal forms—those with modalities—
below:

Ap=(u|A)—B  inst(B,1"qr)=B  quo(|”app(v,?" q))ks1 =M
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Ag=(u|A) v =mody (w) Ag=(u|A) v="18¢
quo (" v), = mod,, (quo(|" w);) quo(™"v), = quo(e);

Ag="1"e v=""e

quo (/" v); = quo(e);

We draw attention to one aspect of the first rule. This rule quotes a function, so
consider the case where v = A (clo(M,p)). We create a fresh variable 1" ¢; and make
the semantic application app(A (clo(M,p)), 1" qx). This last step is only sensible
because values are closed under silent weakening; otherwise p would need to be
weakened over (.

Finally, we record the novel cases of quotation for neutral forms:

quo(app(u](e,d))x = quo(e)(quo(d)i)y

inst(C,mod, (1" q0)) =B inst(c, 7" q) =v
quo(letmod(v,u,C,c,A,e)) = lety, mody, () + quo(e)y in quo(” )i

The NbE function

Having defined both evaluation and quotation, we are almost in a position to define
the complete normalization algorithm. The only missing step is the construction of
the initial environment from a context. This portion of the algorithm takes a context I"
and produces an environment consisting of the variables bound in I". We then use this
environment to kick off the evaluation of terms in context I':

reflect(1) = - reflect(I".(1t | A)) = reflect(I"). 1 [Alretectr qr|

Finally, the complete normalization algorithm evaluates aterm I' - M : A @ m in
the initial environment specified by I" and quotes it back:

normr 4 (M) = g@(iﬂAHM(F) [[M]] reﬂect(F))\F|

4.4 Implementing a Mode Theory

Thus far we have been somewhat vague about which mode theory we were instantiating
MTT with. The normalization algorithm given in Section 4.3, for instance, did not
need to manipulate or compare modalities and so this point was easy to gloss over.
The type-checker, on the other hand, must manipulate and scrutinize modalities and
its definition requires a precise specification of a mode theory. Accordingly, we
now present a representation of mode theories and operations upon them suitable for
implementing a type-checker.

Concretely, our presentation follows the actual representation of mode theories
used in mitten, our implementation of MTT. In mitten, all information specific to a
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mode m
eq_mode : mode — mode — bool idm:m
compm:m—m—m
dom_mod : m — mode — mode
cod_mod : m — mode — mode
(=) :m— m— bool
(<):m—m— bool

Figure 4.3: A fragment of the signature for mode theories used in mitten.

mode theory is confined to a single OCaml module on which the type-checker depends.
In particular, to configure mitten with a new mode theory, it is only necessary to
implement that single module. There are three parts to our signature for mode theories
(summarized in Fig. 4.3):

1. Two abstract types; one for modes and one for modalities.

2. Various operations to compose modalities, extract the domain or codomain
mode from a modality, or construct the identity modality.

3. Three operations to compare modes for equality and modalities for (in)equality.

It is these last two operations which are particularly crucial. Recall that not
all mode theories admit decidable (in)equality and without it, type-checking MTT
is undecidable. Accordingly, any implementation of MTT will require the user to
supply a decision procedure for the mode theory. Our implementation shows that this
information is both necessary and essentially sufficient. We note that the decision
procedures for mode theories are completely separate from the terms and types of
MTT and no knowledge of e.g., normalization-by-evaluation is required for their
implementation.?

Remark 39. The reader might wonder why idm is not parametrized over mode. This
is because idm internally is a placeholder for some identity modality, whose mode is
elaborated. This alleviates practitioners of some tedious bookkeeping obligations in
their proofs. This approach necessitates that the boundary projections dom_mod and
cod_mod take an additional argument of type mode, which is returned on input idm.
Essentially, we assume that always one part of the boundary is known so dom_mod
gets a modality and its codomain as argument whereas cod_mod gets a modality and
its domain as argument.

2See the following for examples: https://github.com/logsem/mitten_preorder/blob/
main/src/lib/


https://github.com/logsem/mitten_preorder/blob/main/src/lib/
https://github.com/logsem/mitten_preorder/blob/main/src/lib/

124 CHAPTER 4. MITTEN : A FLEXIBLE MULTIMODAL PROOF ASSISTANT

4.5 Semantic Type-Checking Algorithm

Having defined the normalization algorithm, we now define the type-checking algo-
rithm for MTT. As mentioned in Sections 4.1 and 4.2, the algorithm is a variant of
Coquand’s semantic type checking algorithm for dependent type theory [40]. Accord-
ingly, the algorithm breaks into two distinct phases: checking and synthesis. The
checking portion of the algorithm accepts a context I', a term M, and a type A and
checks that M has type A in context I". The synthesis phase accepts only the context
and term, and synthesizes the type of the term in this context.

This simple picture is slightly complicated in the case of MTT, where various
side conditions must be managed. For instance, we must ensure that the modalities
a user writes in modal types are well-formed and that the term and type exist at the
same mode as the context. These same considerations also require us to form a more
intricate notion of a semantic context specifically for the type-checking algorithm.

We discuss the definition of semantic contexts in Section 4.5 and present a repre-
sentative fragment of the type-checking algorithm itself in Section 4.5.

Semantic Contexts

In Section 4.2, we explained the intuitions behind MTT while working informally
with the collection of variables in scope. Prior to discussing the type checker, we
must describe the precise notion of context to organize these variables. Two factors
complicate this otherwise standard structures: the modal annotations and restrictions
and the need to evaluate terms during type-checking.

To a first approximation, contexts are still lists of variables with types but with
additional bells and whistles added in order to support these two requirements. In
order to record the necessary modal information, each variable is annotated by a
modality. Deviating from Section 4.2, we add a new context operation =.{u} to
‘lazily’ restrict all entries in a context Z by u rather than storing this information on
each variable separately.

For the second requirement, recall that type-checking must repeatedly test when
two types are equal for the conversion rule. Accordingly, the context must store enough
information to support this conversion test. We follow Coquand [40] and represent
each type in the context by the corresponding value (in the sense of Section 4.3) and
pair each variable with a corresponding value. This value may just be 1* q;, but it may
also store the term associated definition. By storing information in this form, we can
easily project out a semantic environment of a context and use that to evaluate a term
and check for convertibility during type checking.

The grammar of semantic contexts is presented below:

(semantic contexts) = = -|E.(vigA@m)|=Z{u}

We now define two functions: The partial lookup function, which displays the
type with its annotation and restriction as well as the mode it lives at, and the stripping
function, which returns an environment by projecting out only the value components
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of the semantic context. The lookup function is undefined whenever a De Bruijn index
is larger than the length of the context.

(2. (v A @ m))(0) = (1}A), {ic}
(E.(wigB@o))(i+1)=(u|A)m,{V} where (U|A)p, v =2(i)
(EAVHE) = () {vo V') where (11}A),v = (1)

Notation 4.5.1. If we extend a semantic context with a type where the value is a fresh
variable, we hide it to make the expression more readable. ||Z|| denotes the De Bruijn
level.

E(ulA) 2 E (M q)z A @m)

If the modality p is furthermore the identity modality, we omit it and write

A = =. (ﬁ qHEH id A@ m)

Checking and Synthesis

We now come to the type-checking algorithm which is split into a pair of judgments:
EFM<=A@mand E - R=A @m. The first, = - M <A @ m, handles type checking
which tests if M has type A in E. The second, Z - M =-A @ m, implements type
synthesis and accordingly takes only the semantic context = and term M and returns
type A of M in context = if one can be inferred.

We present a few representative rules for these judgments (and explain them
below). To ensure that terms and types are well-formed, we utilize the functions

exposed by the signature presented in Section 4.4. In particular, n ~ m checks whether
two modes are equal and u < v is the modality ordering relation. Furthermore, with
U.dom and u.cod we denote the respective domain and codomain of a modality—
denoted dom_mod and cod_mod respectively in Section 4.4. For readability, we leave
the second argument of y.dom and p.cod implicit.

PI

E{u}rA<U@u.dom Z.(uA)FrB<U@m  p.cod=m

EF(u|A)—=B<U@m

MOD-FORM
E{u}FA<=U@ pu.dom u.cod;m
EF(u|A)<U@m

MOD-INTRO CONV
)
E{utFM«<A@u.dom w.cod =m ZEFR=B@m A=z B
EFmod,(M)<=(u|A)@m EFR<=A@m




126 CHAPTER 4. MITTEN : A FLEXIBLE MULTIMODAL PROOF ASSISTANT

VAR
(k)= (WA)mv  H<V  m=n

El—qk:>A@n

MOD-ELIM
?
v.cod=m Z{v}FR=(u|A)@v.dom E(v,{u|A)FC<=U@m
E.(VO/.L,A) N« [[C]]|5\-m0dy(T‘/‘(lH(HE)) @m

EFletymody(_) < RinN over C= [C]z [g). @m

We first consider the formation rule for dependent products. First we verify that

indeed u.cod 2 m to ensure that the modality ¢ can be used at this mode. Recall that
IT-types in MTT go from a p-restricted type A to a non restricted type B. Accordingly,
we check that A is a type in the u-restricted semantic context =.{u} and that B is
well-formed in the context Z.(u|A). Note that when checking A we change the mode
to .dom.

Since the modal formation and introduction rules follow a similar pattern we will
only look at the modal introduction rule. To validate that mod, (M) has type (i | A)

at mode m we first verify that y.cod ~ m. Then we check that M has type A in the
u-restricted environment =.{ ¢t } at mode pu.dom.

Next, we discuss the conversion rule. When considering a synthesizable term R,
the type-checking algorithm proceeds somewhat differently. We first synthesize the
type of R and then compare the result to the type we were given to check R against. It
is this comparison which uses the normalization algorithm of Section 4.3 to compute
the normal forms of A and B and decides afterwards the equality of the normalized
expressions.

To synthesize a variable q; in a semantic context = at mode m we first compute
the type of the variable together with its annotation and restriction (tt|A),,,{Vv}, using
the lookup function defined in Section 4.5. Before we return A as the type of i, we
must also perform an additional check to ensure that u < v so that this occurrence of
the variable is valid.

Finally, we consider the modal elimination case. Recall from Section 4.2 that
the modal elimination principle allows us to ‘pattern-match’ on a term R : (i | A)
in a v-restricted context and replace it with a variable x :yoy A. To synthesize
letymod,(_ )< R in N over C, we take advantage of the fact that the user pro-
vides the motive C alreadys; if this term is well-typed, its type must be [C] 151 [R] 2

There are, however, several checks to perform to ensure that the term is actually

well-typed. First, we check that v.cod Zm. Next, we synthesize the type of R in the
v-restricted context and check that the result is of the form (u | A). Having computed
(u | A), we then check that both C and N are well-formed. The motive C must be
a type in the extended context Z.(v, (i | A)) while N must have type [C] |z [#] ., in
context Z.(v, (1 | A)).

A complete implementation of the algorithm can be found at https://github.
com/logsem/mitten_preorder/blob/main/src/lib/check.ml.


https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml
https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml
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4.6 Case study: guarded recursion in mitten

We now discuss an extended example using mitten with a particular choice of mode
theory. By instantiating mitten appropriately, we convert it into a proof assistant for
guarded recursion and use it to reason about classical examples from the theory.

Guarded recursion

Guarded recursion provides a discipline for managing recursive definitions within type
theory without compromising soundness. In particular, guarded type theory extends
type theory with a handful of modalities (», " and A) along with a modified version
of the fixed-point combinator:

loeb: (»A—A) - A

By placing the recursive call under a », this weakened fixed-point combinator
does not result in inconsistencies. Together with the other modalities, moreover, it can
be used to define and reason about coinductive types and gives rise to a synthetic form
of domain theory.

Following [23], we are interested in using mitten as a tool to reason about a
particular model of guarded recursion: PSh(®). In fact, using MTT’s capacity to
reason about multiple categories at once, we will work with a slightly richer model
which includes both PSh(®) and Set. In this model, the aforementioned modalities
are all interpreted by right adjoints:

I': PSh(w) — Set A: Set — PSh(w) » :PSh(w) — PSh(w)
'x)=[1,X] AS)=A_.S > (X)0)={x} »X)(n+1)=X(n)
In particular, the composite of I" and A is the global sections comonad 0. The

fixed-point operator loeb in PSh(®) is definable using induction over ®.
Gratzer et. al [58] have shown that MTT with a mode theory axiomatizing these

three modalities is modeled by these two categories and therefore provides a suitable
basis for guarded recursion. We recall their mode theory in Fig. 4.4.

Y doy<l1 =700
KCI/_\S 1</ '}/:yof
~_ L<VAVSH = pu=v

S
Figure 4.4: ¢4: a mode theory for guarded recursion

The equalities represented in Fig. 4.4 together with the equational theory of MTT
ensure that 0 = § oy is an idempotent comonad and that the following equivalence is
definable:

@] (C]A)) =(O]A).
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In order to actually reason about guarded definitions, however, we still must add
Lob induction to the system. Adding Lob induction primitively raises substantial
issues [56], so we opt to axiomitize it along with a (propositional) equation specifying
its unfolding principle:

loeb: (((|A) - A) > A@¢
unfold : (f: (¢]A) = A) — Ids(loeb f, f(loeb f)) @¢

As to be expected, these new constants disrupt canonicity but crucially cause
no issues for type checking. We now discuss how to instantiate mitten with this
particular mode theory.

Implementation

In order to use mitten to reason about guarded MT T, we must construct an imple-
mentation of the mode theory module corresponding to Fig. 4.4 and extend mitten
with constants for Lob induction. The latter point is routine; mitten supports adding
axioms to a development. We therefore focus on the first step: the implementation of
the mode theory.

The main challenge when implementing Fig. 4.4 is to show that the relation < is
decidable. We have done so by using a (simple) form of normalization-by-evaluation
to reduce modalities in this mode theory to normal forms which can be directly
compared.

Remark 40. We leave the modes during the evaluation implicit and assume, without
loss of generality, that we are only considering well-formed modalities.>

By studying the category generated by Fig. 4.4, it becomes clear that ¥ is far
from a free mode theory. In fact, many possible compositions trivialize; in a chain of
composable modalities we can freely remove any Yo 6 as well as any £ to the right
of a 7. Accordingly, there are only four kinds of expressions remaining which thus
constitute normal modalities:

(Normal modalities) 11,v = (F|ko§|[koSoy|y|id,

Note that k = 0 is allowed and thus in particular oy = (®c § oy as well as
id = (0. There is an evident map i sending a normal form £ to a modality in &. We
now construct an inverse to this map:

eval(id,) = (° comp (¢, (k) = (k+1

eval(idy) = id; comp (¢, ko §) = (k165
eval({o V) = comp(/,eval(V)) comp (¢, (ko §o }/) =/Hlo§oy
eval(yoVv) = comp(y,eval(v)) comp(y, /*) =

eval(5ov) = comp(§,eval(v)) comp(7, (koéoy) =y

3This assumption is justified since mitten checks all modalities prior to normalization and type-
checking.
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comp(7, ¥ o §) =id, comp(3,y) =P odoy
comp(§,id,) =005
Theorem 4.6.1. For any modality 1 we have that u = i(eval(u)).

Next, we define a (decidable )partial ordering on normal modalities:

m<n m<n m<n
me e yCvy ModoyC("odoy (ModoyC ("
m<n
(ModCl"0d idy C idg

Theorem 4.6.2. For any normal modalities |1 and v we have |1 C v if and only if
i(p) <i(v).

Corollary 4.6.3. Equality of modes and inequality of modalities are both decidable.

Streams in guarded mitten

We now illustrate the use of this instantiation of mitten by defining the types of
guarded and coinductive streams and constructing various examples.

Remark 41. In the following we deviate from our surface syntax to enhance readibility
of the derivations. Thus, we leave many arguments implicit and alter certain notations.
In particular, propositional identites are denoted by a = b instead of ld4(a,b) and
implicit arguments are omitted. We furthermore hide the type family C of the modal
elimination rule in the following constructions.

We begin with the type of guarded streams.

gstream_fun: U — (¢ |U) - U @1t gstream: U > U@t
gstream_funAX =A x (¢ | X) gstreamA = loeb(gstream_funA)

Notation 4.6.4. We will make use of several standard functions for intensional identity
types such as the functions transport:A=B —+A —Band —':a=b—>b=a.

Recall that we have added L&b induction only with a propositional unfolding
rule. Accordingly, we must use transport along this equality to obtain the folding and
unfolding operations for gstream:

gfold: (A:U) — A x (¢ | gstreamA) — gstreamA @ ¢
gfoldA = transport (unfold(gstream_funA))~!

gunfold : (A : U) — gstream A — A x (¢ | gstreamA) @t
gunfoldA = transport (unfold (gstream_fun A))
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We are able to deduce the following equalities by using the fact that transport p is

inverse to transport p~!:

fold_unfold : (s : gstreamA) — gfoldA (gunfoldAs) =s @¢
unfold_fold : (s : A x (¢ | gstreamA)) — gunfoldA (gfoldAs) =s @1

Using this we can define the familiar operations on guarded streams and prove
their expected equations.

ghead : gstreamA — A gtail : gstreamA — (¢ | gstream A)
_: gtail(gconsas) =s gcons: A — (¢ | gstreamA) —
_:ghead(gconsas) =a gstreamA

_: geons (gheads) (gtails) = s

With Lob induction, these definitions and equalities allow us to construct and work
with guarded streams, which differ from coinductive streams in several important
ways. For instance, the tail operation on guarded streams produces a guarded stream
under a later which prevents us from writing an operation dropping every element of
a guarded stream.

By making use of the other modalities of Fig. 4.4, we are able to define the type
of coinductive streams. To do so, we will use the following operations:

comp,s: (Y[ (0 |A)) =A  comp,,:(y|({[A)) — (y|A)

Both of these are instances of the general composition principle for modalities
available in MTT. We now define streams as follows:

stream:U—>U@s
streamA = (y| gstream (0 | A))

head : streamA — A tail : streamA — streamA
heads = tails =
letjq mody(g) = s in letig mody(g) =s in
comp, 5(mody(gheadg)) comp,, ,(mody(gtailg))

We emphasize that the type of coinductive streams lives at mode s, the mode
modeled by sets. Intuitively, by taking the global sections of a guarded stream we
obtain the normal coinductive stream [36]. Indeed, using guarded recursion in mode ¢,
we are able to equip this type with a coiteration principle:

go:(0|A:U)(S|S:U)(S6|S—AXS)—(0]|S)—gstream (S |A) @t
goAS f =loebAgs.gcons(modgs(m (fs)), mody(g(m (fs))))

coiter: (A:U)(S:U) = (S—AxS)— S —streamA@s
coiterAS fs =mod,(goAS fs)
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Informally, this coiteration scheme induces a map from any (A x —)-coalgebra to
streamA.

It is natural to wonder whether streamA is the final coalgebra for (A x —). In
the presence of equality reflection, this was established by Gratzer et al. [58]. To
replay this proof in mitten, we would require two ingredients not presently available:
function extensionality and modal extensionality. The first is unsurprising, so we focus
on the second. Modalities do not necessarily preserve identity types and therefore in
general we cannot have a function:

(€ ]1da(a,b)) — 1d(g4) (mods(a),mod(b))

Such a map is crucial to establish arguments of equality by Lob induction like the final-
ity of streamA. Having said this, we emphasize that without disrupting normalization
we can extend MTT with a crisp induction principle which enables us to construct
such a map and prove it to be an equivalence [54]. In the presence of this additional
structure—or a postulate to the same effect—we conjecture that stream A is the final
coalgebra.

We conclude with a simple example of the coiteration: the stream of all natural
numbers.

nats : streamNat
nats = coiter (An. (n,succ(n)))0

4.7 Related Work

Modal proof assistants have seen a great deal of attention in the last several years. We
compare our work on mitten to several of the most closely related lines of research.

Proof assistants for a single modality There have been multiple attempts to extend
proof assistants with a single specific modality. Notably Vezzosi [109] extends
Agda with an idempotent comonad and Gratzer et al. [57] created a proof assistant
based around a similar modality. Both of these proof assistants are closely related to
mitten—indeed, the former may be encoded within mitten. Importantly, however,
unlike these implementations mitten is not tied to a particular modal situation and
can be easily adapted to accommodate other modalities.

Normalization for MTT In [54], Gratzer proves that MTT enjoys a normalization
algorithm. While his proof avoids a number of technicalities by adopting a synthetic
approach to normalization, this obstructs extracting an actual algorithm for use in
implementation. We have taken this next step and, inspired by the synthetic proof
of normalization, obtained an actual algorithm suitable for implementation in the
particular case of preordered mode theories. Furthermore, while Gratzer works relative
to the assumption that the ambient mode theory is decidable, we have isolated the
precise requirements necessary on the mode theory and shown that they are sufficiently
flexible to accommodate common mode theories.
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Guarded recursion in Agda In Section 4.6 we discussed an instantiation of mitten
for guarded recursion. For this specific case, an experimental Agda extension is avail-
able [104]. This extension implements a version of clocked cubical type theory [72].
This variant of guarded type theory offers finer-grained guarded programming by ex-
posing multiple independent later modalities; these can be used to interleave guarded
types without issue. Furthermore, clocked cubical type theory capitalizes on cer-
tain primitives of cubical type theory to expose some definitional equalities around
L6b induction. Guarded cubical Agda builds upon Agda’s existing facilities for
interactive proof developments and the system has been used for non-trivial develop-
ments [83, 108].

As a consequence of this more intricate theory, however, the metatheory of
guarded cubical Agda is far less developed than the theory of mitten. Moreover, the
infrastructure of guarded cubical Agda is (necessarily) specialized to just one modal
situation. While mitten is a more primitive system than guarded cubical Agda, it is
therefore far more flexible and offers a theoretical framework for many modal systems
rather than being specialized to one.

Sikkel Recently, Ceulemans et al. [33] have explored an alternative strategy for
implementing MTT in Sikkel. Rather than constructing a custom proof assistant like
mitten, they have provided a DSL for a simply-typed version of MTT within Agda.
Within this DSL, one may construct terms in MTT which then compile to elements of
an appropriate denotational semantics expressed within Agda. A major advantage of
such an approach is the low startup cost: the full resources of the Agda proof assistant
are available when working within Sikkel. By embedding within Agda, however,
Sikkel’s interface is less convenient and it is currently restricted only to simple types.
Accordingly, we believe that a proof assistant designed for MTT from its inception
offers a more promising route for serious modal programming.

Menkar Menkar [90] is an earlier attempt at a proof assistant for multimodal
programming developed by Nuyts. It predates—and in fact partially inspires—MTT,
but contains both theoretical and practical deficiencies which led to its development
being suspended in 2019. Inspired by the advances in proof theory for multimodal
type theory obtained since Menkar’s development, both mitten and Sikkel are early
attempts to develop a theoretically sound replacement for Menkar. While not as
fully-featured as Menkar, mitten in particular is an attempt to develop a principled
modal proof assistant.

4.8 Conclusions and future work

We contribute mitten, a flexible proof assistant which can be specialized to a wide
range of modal type theories. We have designed normalization and type-checking
algorithms for mitten based on recent advances in the metatheory of MTT [54].
Finally, we have argued for mitten’s utility by instantiating it to a mode theory



4.8. CONCLUSIONS AND FUTURE WORK 133

suitable for guarded recursion and constructing various classical examples of guarded
programs.

Thus far, mitten is restricted to working with preordered mode theories. While
this constitutes a large and important class of examples, it would be desirable to
implement full MTT and allow for arbitrary 2-categories as mode theories. Such an
extension, however, would require a more refined normalization algorithm.

In particular, in our algorithm we have taken advantage of the absence of distinct
2-cells to avoid annotating variables with modal coercions. This, in turn, preserves a
crucial invariant of NbE: it is never necessary to explicitly substitute within a value.
Indeed, in our style of NbE such substitutions are not even possible; our representation
of closures essentially precludes them. We hope to generalize our approach to cover
full MTT by incorporating some techniques recently used by Hu and Pientka [63]
in a normalization algorithm for a particular modal type theory. Essentially, they
enable a small amount of substitution to occur during the normalization algorithm;
by carefully structuring the necessary modal substitutions they are able to adapt the
standard normalization-by-evaluation to their setting. We hope to do the same in
mitten by generalizing their approach to support multiple interacting modalities.
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Omitted proofs of chapter 3

This appendix contains proofs omitted from the main text.

Section 3.2

Proof of Lemma 3.2.1. The canonical map A — Vk.A maps a to Ax.a. The map
defined by application to the clock constant xy defines a left inverse to this map. It
suffices to show that this is also a right inverse, i.e., that a [k] = a[xp] for all a : Vk.A
and all k. Since the canonical map B — Vk.B is assumed to be an equivalence, and
application to Ky is a left inverse, it must also be a right inverse, so the corresponding
property b[x| = b[xp] for all b: Vx.B. Applying this to b = Ak.i(a[k]) we get
i(a[k]) = i(a[xo]), which by assumption implies a [k] = a [Kp). O

Section 3.3

Proof of Lemma 3.3.6. Using the classical definition of & in terms of finite maps, the
equivalence Z(A+1) — 14[0,1) x ZA would map f to  if f(*) = 1 and otherwise
to the pair (f (%), #(*) -g) where g is the restriction of f to A. In the special case
of A = Fin(n), by Lemma 3.3.4, we can indeed define the equivalence like that and
prove it an equivalence, also in CCTT. If we do that and transport the convex algebra
structure from Z(Fin(n+1)) to 1 +[0,1) x Z(Fin(n)) we get a structure satisfying

the following equalities.

*Dpx =%
*®,(nv)=(p+({1—-p)rv)
(g, 1) ®p (V) = (pg+(1—p)r,u Bt ) v)
P(I=q)+H1=p)(1=7)
To prove the general statement, we will define a convex algebra on 1+ [0,1) x ZA
using the above equations, and prove that it defines the free convex algebra on A + 1.
First, to see that the convex algebra operation satisfies the axioms of convex

algebras, we use the fact that it does so in the case of A = Fin(n). To prove transitivity,
for example, there are 8 cases to consider. One of them is

(1) 8 (5, V) 84 (1,0) = (1) @ ((5:V) Bcas (1,p) ) )
for given p,q,r,s,¢:[0,1) and u,v,p : Z(A). By Lemma 3.3.5 there exists an n, and
w,v' p':2(Fin(n))aswellas f: Fin(n) — A suchthat u = 2(f)(u'), v=2(f) (V)
and p = Z2(f)(p’). (The lemma gives three different n, and different functions f but
we can find a common domain as n+ n +n as in the proof of Lemma 3.3.5). Now,
since (1) holds for ', v', p” we can apply [0,1) x Z(f) to both sides and get (1).

To see that this defines the free convex algebra structure on A + 1, suppose B is
a convex algebraand f: A+ 1 — B. Let g : A — B be the unique extension of the
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restriction of f to A, and define the extension f of f by the clauses

)= 1) f(p.u) = f(x) @pg(u)

if p>0and g(u) if p =0. To show that this is a homomorphism, we must consider
four cases. One is

F(q.1) ®p (V) = flg, 1) @p f (V)

where (assuming g, r not zero) the left hand side unfolds to

f(*)@pqﬂpp)rg(ﬂ@( pl—q) ))V)

p(I—q)+(1-p)(1-r

= 1) prrtipy (000 s ye0)

p(I=q)+(1-p

and the right hand side to

(f(x) D &(1)) p (f (%) ©rg(v))

and now the case is easily verified using the technique of 23.
Finally, to show uniqueness, suppose % : 1+ [0, llx ZA — B is another homo-

morphism extending f. Then clearly h(x) = f(*) = f(x), and since Au.(0, 1) is a
homomorphism from ZA to 1+ [0, 1) x ZA, we also get

h(0,p) = g(u) = f(0,u)

by induction on p. So finally since (p, i) =@, (0, 1) also h(p,u) = f(p,u) for
any (p,10). O

Section 3.4

Proof of Lemma 3.4.6. 1. By induction on n. For n = 0, note that run"v = v. So
the statement simplifies to v ~ v, which holds by definition. For n = n' + 1,
we consider the different cases for v.

e If v = 8", then run"v = v and the statement holds by definition.

o If v = step’V/, then we know v ~» V' by definition of ~». In addition,
! /
run”v = run” v/, and we know from our IH that v/ ~ run™ v'. Hence by
transitivity of ~»: v ~ runv.

e If v=wv EB?, V,, then runv = run"v, EB\Z, run"v,, then we may assume
that vi ~ run"v| and v, ~> run”v,. Then by the choice axiom of ~ also:
vV~ run"v, @Y, run”v, = runv; @\; Vo = run"v.

2. By induction on n. The base case n = 0 is trivial because run’v = v for all v.
For n =n’ + 1, we go by induction on ~.
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* For the base case v = V/, the statement is trivial.

« For v = step”V/, we have run"v = run™ v/, By the first part of this Lemma,
then runv ~ run"v’.

o If there is a v” such that v ~ v" and V" ~ v/, then by induction we may
assume that run”v ~ run”v” and run”v” ~ run"v’. Then by transitivity
of ~ also run"v ~ run"v’.

e Lastly, if v=wv, 69? vy and V' = v| EB; v} such that v; ~ v{ and v, ~ Vj,
then by induction we may assume that also run”v; ~ run” v, and similarly
for v, and v;. Then also:

run”v = run"v; @Y, \)
= run"v; @Y, run"v,
ny, ny,!
~ runtV @, runtv,
_ ny,! o~V ny,/
=runv; @, run"v,

=run"v/
3. By induction on ~.

 The base case for v/ = Vv is trivial.
e For v = step’V’, we have that run'v = v/, and hence v/ ~ run'v.

e If there is a V" such that v ~» v" and v’ ~ V/, then by induction there is
an m; such that v/ ~ run™ v and there is an m, such that v/ ~ run™v”.
Then the second part of this lemma, also run™Vv” ~s run™run™v =
run™ ™y and hence by transitivity: v/~ run™ M2y,

e Lastly, if v=v, @\; vy and V' = v| @Y, v} such that v ~ v| and v, ~ Vj,
then by induction there is an m such that v{ ~ run™v; and an m, such
that v} ~ run”v,. Let n = max(m;,m,). Then by the first part of this
lemma: V| ~ run"v; and Vj ~ run"v,. So then also v/ ~ run"v.

O
Proof of Lemma 3.4.7. By induction on ~:
* The first base case is obvious by reflexivity.

» For the second base case, note that:

f(step™v) = step’(F(v)) ~ (V)

e If v~ v/ came from the transitivity axiom, then there is a v" such that v ~» v"
and v" ~ v'. By the induction hypothesis we know that then also f(v) ~ f(v")
and f(v") ~ f(V'). Then by transitivity of ~: f(v)~ f(V').
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e Ifv=w @Y, vy and V' = V| EBY, v}, where v| ~ V| and v, ~> Vj, then by the
induction hypothesis: f(vi)~ f(v{) and f(v2) ~ f(V5). Then:
fv)=F(vie)v)

= (f(vi) &}, (f(v2)

~ (F(vD) @), (F(v5)

O

Proof of Lemma 3.4.8. 1. For the fist statement, we prove that PT,(v) <PT,1(v)
by induction on n. For n = 0, we do a case analysis of v:

* If v = §"a, then by definition PTo(8"a) = 1, and PT(8"a) = PTo(run(8"a)) =
PTo(6%) = 1. So in this case we have equality.

* If v = step’V/, then by definition PTy(step”v’) = 0 and PT(step’V’) =
PTo(run(step”™v’)) = PTo(Vv') > 0.

e If v=uv @Y, v, then we may assume that PTo(v;) < PT;(v;) and
PTo(v2) < PTi(v2). Then also:
PTo(Vl @Y, Vz) = PTo(Vl) @ PTO(VZ)
< PTl(Vl) V PTI(VQ)
=PTo(run(vy)) @ PTo(run(v2))
= PTo(ru (Vl@ Vz))
=PT, (Vl 69 Vz)
For n = n’' + 1, notice that PT,;1(v) = PT,(run(v)). We again go by case
analysis of v:
 If v = §"a for some a : A, then PT (SVa) =PT,.1(8%)=1.

* If v = step”V’, then PT,(step"v’) = PT,(run(step’v’)) = PT,,(V'), and
PT,.1(step’v') = PT,(run(step’V’ )) PT,(v'). By the induction hy-
pothesis for 1, we know that PT,,(v') < PT,(v'), and hence PT,(step’v’) <
PTn+l (Stepvv/)’

e Ifv=v @Y, vy, then PT,() distributes through the sum and via a similar
reasoning as above we get to the conclusion.

2. The second statement of this Lemma we also prove by induction on n. For
n =0 we go by induction on ~-.

 If v = V/, then the statement is trivially true.
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« If v = step”V’, by definition PT((v) = 0, and hence: PTo(v) < PTo(V').

e If there is a V" such that v~ v" and v” ~» v/, then by the induction
hypothesis we have PTy(v) < PTo(v”) and PTo(v") < PTy(v'). Then
by transitivity of <, we also have PTo(v) < PTy(V').

e Lastly, if v=v, 69\;, vy and V' = V] EB\; v} such that v; ~ v and v, ~
v}, then by the induction hypothesis we have PT(v;) < PTy(v]) and
PTo(Vz) < PT()(Vé). Then:

PTo(v) =p-PTo(vi)+(1—p)-PTo(v2)
< p-PTo(v))+(1—p)-PTo(v3)
— PTo(V).

For n =n’+ 1, we again go by induction on ~. The cases of v = V/, transitivity,
and sum are the same as above (note that PT, () distributes over _EB\Z, _ because
both run and PT(() do so). The last case, v = step”V’, we prove here. By
definition, PT,(v) = PT,/(V'). Then by the first part of this lemma, we have
PT,(v') <PT,(V'), and hence: PT,(v) < PT,(V').

O

Section 3.5

Proof of Example 29. Let

Ey £ A(lam x.M).step*(A(a : k).eval*(M[V /x]))

Note that
eval*(Yf) = A*(eval®(lam x.(es(foldef))x))
and
eval¥(es(foldey)) = (A¥) (eval®(f(lam x.(es(foldef)x)))
Therefore,
eval*((Y/)(V))
= (A¥)?(eval*(es(foldes))V))
= (A¥)’(eval*(f(lam x.(es(foldes)x)) >>=" Ey)
(A¥)* (8% (f) >>=" A(lam Z.P).eval*(lam x.(es(foldes)x))

>>=F AU.A"(eval®(P[U /z]) >>=" Ey))
(A¥)*(8%(f) >>=" A(lam Z.P).A¥ .eval*(lam x.(e/(foldef)x))
>>="AU.A*(eval®(P[U /7]) >>=" Ey))
_ (AY*(8%(f) >>=" A(lam Z.P).eval*(Yf)
>>=" AU.A"(eval®(P[U /z]) >>=" Ey))
— (A% (eval“(F(Y£))) >>=" Ey)
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= (A%)*(eval"((f(Y) (V)

This completes the proof.

Section 3.6

Lemma .0.1 (Substitution Lemma). For any well-typed term T'.(x: 6) =M : T as well
as every well typed value I' -V : ¢ we have

[[M[V/XH]; =M ﬂpr[[V]]VaIK

Proof. We proceed by induction on term derivations.
Case: M =x
Then

0V /015 = VD5 = B,y puoe

Case:I'Flamx.M : 171 = 1
Assume without loss of generality that y # x. Otherwise, use an ¢-equivalent term
where this condition is true. Consequently, we have that

[lam x.M'[V /y]]5
—5Wme(’WUD“”>
S5 A : [a]).[M[V Y1 )
(0 I )

_ SK /mVal,x
=6 <[[Iam x.M Hp,w[[vﬂ),’a"’“>

= [lam x.M']*

Py »—>[[V]]V3| K

Case: M = MN
We have that
[MN[V /x]]p
= [M[V/A]p- [NV /A1,
[[ ]]P X [V [[Nﬂp x [Vpehe
= [MN]?

P V™"

Case: M = fold M’
We have that

[[foIdM’[V/x]]]g
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= P (next) (IM'[V /4]
= P(next") (HM/]];,XH[[V]]XQ"K>
= [foldM'I_p vas

Case: M = unfold M’
We have
[unfold M'[V /x]] 5
= [M'[V /x]]§ >>=" Av.step® (Aa.8%(v[at]))
= [[M/]]Z,x»—)[[V]:,/aI’K >>=" Av.step(Ao.6%(v]]))
= [[unfoldM’]]"3(7)6H>[[‘/1]>’,a.,,c

Case: M = choice?(Ny,N,) We have
[choice? (N1, N2)[V /x]] 5
= [N [V/A]5 @F [N2[V /)15
= HNlﬂg,xH[v]g @g [[NZ]];JH[[V]]E
= [[choiceq(Nl,Nz)]]g,xH[[vﬂg

We leave the remaining cases to the reader. O

Relating Syntactic and Semantic Values

It is easy to show that meta-level eliminators for values such as 7 : Val,, . — Val;
and m : Valg, . — Val; commute with [[—]}Va'-r’f,

Lemma .0.2. For all values -+V : 6 X T and - - n : Nat we have

[[ﬂV]]VE!I’K = pry [[V]]VaI,K [[EV]]VaI,K — prz[[V]]Val,K

[[suc Q]]VaLK _ SuC[[Qﬂval’K [[pred E]]Val,lc _ pl‘ed[[ﬁﬂval’K

Proof. Case: m|V
We have that [ ((V, W) Valx = [V]VahK = pr ([(V,W)]Vat¥x)
Case: pred n

[[pred E]]Val,rc = HMHVM,K — max(O, [[EHVaI,K N 1)

_ predﬂﬂ]]Val,K

The remaining cases are similar. O
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Lemma .0.3. For any meta-level type A and terms a,b : A we we have

0 —a 0 —a [ ]]Val,c
= o |l— ’
n+1 —b n+1 —b

as functions of the type Valy,, — A
Proof. This is a direct consequence of the fact that Valy,, and .4 are isomorphic. [

Lemma .0.4. For functions f : [o]* — A and g : [t]* — A we have

o+t A

{amv Hf([[VﬂVa"’ﬂ_{i“‘V ~ Lot val

inrV = g([V]Ve ) linry =g
Proof of Theorem 3.6.1. First, assume the guarded hypothesis
VM : Tmg.(>(a: k). (eval*M >>=F §¥o [-]VaL6) = [M]").

We proceed with case analysis of term derivations.
Case: M =V The value cases are all the same:

DK‘([[_]]VaLK) (evaIKV) — DK([[_]]Val,K) (SK(V))
— SK([[VuVaLK‘)
=pr*

Case: M = sucM’

DK([[—]]V"""K) (eval*(sucM")) =

Case: M = pred M’

DK<[[—]]V3"K> (eval*(predM")) -V K) “(pred) (eval*M"))

A

DK([[pred Ve K) (eval*M')
DK(pred [-]V2") ) (eval*M')
D

(pred) (D¥([-]V"*) (eval"))
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= D"(pred) ([M']")
= [predM']*

Case: M = ifz(L,M',N)

DK<[[_]]V3|,K) (evaIK(ifZ(L,M,7N)))

o (oo (T )
_ K K 0~ DK([[i]}VaI,K) (EValk(M/))
= (eVal L>>= {I’t—i—l’_> DK([[_ﬂVaI,K) (eval"(N)) )

0 [[M/]]K'

=eval*L >>=F
n+1+— [N]*

0 [M]*

= eval*L >>=X An.match [n]V"* with
n+1~— [N]*

0 [M']*

— KL >>=K §K o [— Val,x p—
(o2 R {mm[[zvﬂk

=[ifz(L,M',N)]*
Case: M = (M, N)
D*([-1¥2*) (eval® (M',N))
- D"([[—]]VZ*'V") (eval*M' >>=" AV.(eval*N >>=" AW.8*((V,W))))
— eval*M' >>=F AV. (evaIKN S>=FK AW.DK<[[—]]V3"K> (5'<(<V,W>)))
= eval*M' >>=" AV.eval*N >>=X AW.8%([(V,W)]V2"¥)
= eval*M’ >>=F AV.eval*N >>=X AW.§%(([V]V2"¥, [W]V2"%))
_ (DK([[_]]Va'ﬂf) (eval*M")) >>:%.(D'<([[—]]Va'ﬂ<) (eval*N))
>>=F Aw.5%((v,w))

= [M']* >>=" Av.[N]* >>=" Aw.8((v,w))
= [(M',N)]®

Case: M = fst M’

D"([[—]]V“‘"’“) (eval®(fstM"))

= D5([-1""*) (D"(m) (eval™m"))
D¥([m ()] (eval*M’)
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= D"(pry) (DK([[—]]V3"K> (evaIKM’))
= D"(pry) ([M]")
= [fstM']*

Case: M =snd M’

K [[—Hva"K) (eval®(sndM"))

(
K([[_]]VaLK) (DK(E) (eval"M’))
K([[TL' (_)]]VaI,K) (evalkM/)

“(pr,) (DK([[—]]V3"K) (evaIKM’))
“(pry) ([M'T¥)

Case: M = MN
We start by unfolding the definition of (eval*MN) >>=X §¥ o [-]V"¥ and use asso-
ciativity as well as the definition of >>= to get

(eval*M >>=" A(lam x.M').eval*N >>="
AV.(A% (eval*(M'[V /x])))) >>=K 5K o [—]VaH¥

eval“M >>="2A(lam x.M").eval*N
( >>="AV.(A* (eval*(M'[V /x])) >>=" 6*o [[—]]Va'v’()>

eval“M >>="A(lam x.M").eval*N

>>=K AV.A* (evaIK(M’[V/x]) >>=F %o [[—ﬂva"K>
eval*M >>="A(lam x.M').eval*N

- ( >>=K ;Lv.(step'f(xa.[[M’[V/x]ﬂ;))>

In the last step we applied the guarded hypothesis. Next, we use the substitution
lemma for terms and recall the definition of semantic function type values, which
leaves us with

= eval*M >>=" A(lam x.M’).eval*N >>=" AW.(A*([ M'] [w]velx))
eval*M >>="A(lam x.M").eval*N

- ( S>=K AW.(A¥([lam x.M’]]VQ"K([[W]]V"’"K))))

= eval"M >>=" AV.eval*N >>=" AW.(A*([V]V2"*([W]V2'¥)))

In the last equation, we simply omitted the superfluous case analysis of function
values. We now use the functoriality of D* to get

= (eval*M >>=F [-]V2"*) >>=FLv.(eval*N >>=F []V2"¥)
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>>=F Aw.A*(vw)
which by the induction hypothesis gives

= [M]* >>=" Av.[N]¥ >>=" Aw.step® (A (o : K).vw)
- M1 VT
— [MN]*

Case: M = inlM'

DK([[ va K) (eval®(inlM"))
K([[ Ve K) “(inl) (eval*M"))
K([[lnl )V K) (eval*M'")

(inl) ( ([[ va K) (evaIKM’))
inl

“(inl) ([M']")

I
‘:‘UUUU

Case: M = inrM’
[[—ﬂva"’(> (eval®(inrM"))
[[—ﬂva'=K> (DX(inr) (eval*M"))

Case: M = case(L,x.M,y.N)
We proceed similarly to the function application case and first unfold the definition of
D¥([—]V2"¥) (eval®case(L,x.M,y.N))

o (1) (evan - {@nlv ~ (Aeval“(MIV /) )
inrV — (A¥eval®(N[V /x]))

e {.mm D[ (el 1 )
inrV — D¥([~]V2"¥) (A% (eval*(N[V /x])))

. inlV = A*(DX([-]V2") (eval*(M[V /x])))

= eval®L >>=F {erl—)AK ( ]]Val K‘) (evaI"(N[V/x])))

. {leH (AX[M[V /x]]¥)

= eval®L >>=F

inrV — (AX[N[V /x]]¥)
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inlV > A (M5, )

=eval"L >>="¢{ N .
eV 5 A%V )

inlv — (AX[M]¥)

= eval¥L >>=" AV.match [V]V3* with{ |
inrv — (AX[N]¥)

- (i) o

[l AR(QMD)
=7 >>= {inrv»—)A"([[N]}f)

= [case(L,x.M,y.N)[*
Case: M = fold M’
KG[ Vel K) (eval*(fold M)
([=1Y2") (D((fold)) (eval<(a')))
K([[fold ]]Va"‘) (eval*(M"))
“(next* o [-]2) (eval*(M"))
oo (A1 )

(
*(next® )([[M]] )
= [fold M']*

Case: M = unfold M’
Note that for V' : Val clux.z/x] We have that

>(a:K). ([[fold V’]]V3'7"[o¢] = [[V’]]Va'-r'f>

and thus we get

K([[ ]]V"’" ’“) evaI unfoIdM))
K(ﬂ ) (eval () 5= A(ToldV').A%(8%(V')

eval*(M") >>=" A (foldV’

*(1-1v*) (a%(8* (")

(M) ).D
‘(M) ) DA([-V2) (A% (3% (V1Y)

= eval¥(M') >>=" A(foldV').(step® (A (a: ).(8([V']V*"*))))
‘(M) )
“(M)

/

(
>>=" L (fold V'
(

M) >>=F L(foldV").(step® (A (o: k).(8%([fold V']V ¥ [a]))))
M') >>=5 2V.(step*(A(a: x). (8" ([V]¥*"*[a]))))
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— eval¥ (M) >>=" (Av.step*(A(at: K).8% (v[a]))) o []V2*
- (DK([[—]]VBLK) (eval® (M) >>=F Av.step (A (a: k).85(v[a]))
= [unfold M']*
Case: M = choice” (Ny,N,)
D"([[—]]V"’"K) (eval®(choice” (N1,N,)))
DK<[[—]]V3"K) (eval®(Ny) @5 eval®(M))
= (O%([-1¥") (evar* (V1)) ) @5 (DF(I-1Y2") (eval“(N2) )
= [M]* @, [N2]*
= [choice” (Ny,N,)]*
O

Proof of equation (3.7). Note that f is a value by assumption and Y as well as e are
values by definition. Let p £ x > v, and write A¥ for step® o nextX.

[Y(£)xlp
= (IYIp - [71p) - I+lp
= ((A") flam z.e(fold ()] ) - [+l
. H[[x]]va"")
%) ([es(fold (e, - [] )
P ((lesI5 - Tfold (e)15) - 415

( es(fold (e;))
o ([[lety = unfold (foldey) in f(lam x.(y (foldef))x)]]g>

T8

(Itam ¥/ (1am x.((fold ) x )]]g-[[unfold(foldef)]]g))

3tk

(( fam x5/ (folde ) I, p, wvas) - [415)
(4% (((a%) (mp [1am x.(e(folde )] ) ) - x5

(A% (A%(Ir15- IY L) - [

<A'<>4((ufv I5) - [5)

(& (

A% (LAY ()T

K\3

AK3

AK3
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Section 3.7

Proof of Lemma 3.7.3. The proof is organised as follows: We first show how to
apply [72, Theorem 4.3] to encode a coinductive type as the one described in
Lemma 3.7.3. Then we show that the encoding is the same as % .

Recall first the indexed version of [72, Theorem 4.3]: If

F:I—=-U)—=(I—V)
is a functor in the naive sense, such that for any X : Vx.(I — U), the canonical map
F(Vx.X) = VKk.F(X [K])

is an equivalence, then a final coalgebra for F' can be encoded by first solving
F(>*X) ~ X and then defining the final coalgebra as Vk.X. Here Vk.X means
A(i: 1).Vx.(X [x]i), and >*X means A (i : I).>* (X i)

For this application, take = D"(A) x D"(A), and define F(P)(u, v) by the clauses
of Lemma 3.7.3, i.e., either

1. there exists 4’ : ZA and V' : 2B such that u = Z(inl)(u’), v ~ v’ and there
exists a coupling p : Cpl, (i, V'), or

2. there exists y’ : 2(D"A) such that u = Z(inr)(u’) and P(run(u’), v), or

3. there exist u; : ZA, 1o : 2(DA), v : 2B, v, : D'B, and p : (0,1), such that
U= @pH and V ~ Vi ®), V5, and there exists a p : Cply (ur, Vi), and
P(run(/.tz),\/2).

Given P : Vk.(D"(A) x D’(A) — U) we show that V&.F (P[k]) ~ F(Vk.P), the right
hand side of this is the statement that either

1. there exist 4’ : 2A and V' : I B such that g = 2(inl)(u’), v ~ v’ and there
exists a coupling p : Cpl (i, V'), or

2. there exists ' : 2(D"A) such that 4 = P(inr)(u’) and Yk.(P[k])(run(u’), v),
or

3. there exist Uy : ZA, 1y : 2(DA), vy : B, v, : D'B, and p : (0,1), such that
U= i &)U and V ~ Vi @, V2, and there exists a p : Cply (1, v1), and
V. (P[x])(run(ir), v2).

To prove this, recall the following facts from [72]: Vk.(—) commutes with sums,
products, ¥ and propositional truncation. In particular, it commutes with existential
quantification over clock irrelevant types. Recall also that our assumption of a clock
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constant makes all propositions clock irrelevant. In particular, in Vk.F (P [k]) we can
commute Vk first over the case split, then remove it from the case of (1) because this is
a proposition not referring to P, and so k will not appear in it. In (2), we can commute
Vk over first the existential quantification over the clock irrelevant type 2(D"A), then
over the product and use that 1 = % (inr)(u’) is a proposition, arriving at condition
(2) of F(Vk.P). The case of (3) is similar.

The conclusion from this is that the final coalgebra mentioned in Lemma 3.7.3
can be encoded as S(i, V) = Vk.S¥(u, v), where S¥ is the guarded recursive relation
satisfying S*(u, v) iff either

1. there exists 4’ : ZA and V' : 2B such that u = Z(inl)(u’), v ~ v’ and there
exists a coupling p : Cpl, (1, V'), or

2. there exists y’ : 2(D"A) such that g = Z(inr)(u’) and >*(S¥(run(u’),v)), or

3. there exist u; : ZA, U, : Z2(D'A),vi : ZB,v, : D'B, and p : (0,1), such that
U=l ®p U and V ~ Vi @) V2, and there exists a p : Cply (11, V1), and
> (S*(run(p2), v2)).-

It remains to show that S*(u, v) is equivalent to Z" (u[x],v), which we prove
by guarded recursion. First recall that (1 [k]) Z " v iff either

1. there exist ' : A and V' : ZB such that (u [x]) = Z(inl)(u’), and v ~ v’ and
there exists a coupling p : Cpl, (1, V'), or

—K

2. thereexists i’ : Z(>*D¥A) such that u [k] = Z(inr)(u') and X (2~ ((E¥(W)))[ex]),V)),

3. there exist i : ZA, Uy : 2(>XD¥A), vy : B, v, : D'B, and p : (0,1), such that
1= Py and vV~ Vi ®), V5, and there exists a p : Cply (uy, V), and

>F (0 k) ($ (k) [0] 2 o).

Proving S¥(u,v) implies Z " (1[k],v) is easy. For example, in the case of (3)
of S¥(u,v), to prove z" (u[x],v) we can reuse Ui, Vi, and v, and take (U, to
be w, = Z(next¥oevi)(uz). Easy calculations then show that u [x] = u; &, 13
and {* (1)) = next®(run(z) []) so that >*(a : k) (E*(w)) [@] Z" v,) follows from
>X(S¥(run(uz), v2)) by guarded recursion.

In the other direction we just show that (3) of (1 [K]) Z " v implies (3) of S* (11, V).
So suppose the former, and apply the equivalence of Theorem 3.3.7 to . By unique-
ness of | [k] = W @, Wy it must be the case that also u = p; @, u for some )
such that ) = P(next® oevy)(i2). Now, as before {*(t2) = next®(run(u}) [x])
so that >*(S*(run(u}), v2)) follows from >*(a : k) (E*(w2) [@] Z" v,) by guarded
recursion. O

Proof of Lemma 3.7.6. For the first statement, notice that (step* ;) @} (step ) =
P(inr)(8(u1) ®p 6(12)), and step™ (A (a: k). (1 []) © (U2 [at])) = P (inr)(8(A (o
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K).(11 [a]) D) (U2 [at]))), where both right hands of these equations are of form
P(inr)(u') with u’ : 2(>*D¥A). Therefore, by Definition 3.7.2(2) we have:

step*Li1) @), (step® ) #" v

o (a:0). (658 () @ (8(12)))[e]) Z )

= (k). (( o) @ (m2[a]) Z" v)

= (00:k).(((E*(8(A(B:k)-(1 1[13])@K( [ BY))ed) 7" v)
& step™(A(B:x).(m [B]) @) (12(B])) Z

The second statement follows from Lemma 3.7.5 since
(step”(v1)) &}, (step’(v2)) ~ vi &), v,
and Stepv(vl EBY, Vo)~ V) @z Va. OJ
Proof of Lemma 3.7.7. We analyse the different possibilities for u; z" vy and U Zz" Va.

o If both u; : ZA and p, : ZA, then there exist v{, v} such that v; ~ v| and
V2 ~ V5, and there exist p; : Cpl, (1], v]),p2 : Cply, (1), V). Then:

VI D), Vo~ VB V)
P1@pp2: Cply (1 ©p 13, Vi Bp V3)
And hence: (u; @) ,uz)gK (v1 @Y, V).

o If uy: 24 and Uz : Z(>XDXA), then taking p = p; : Cpl 4, (11, vy) that we get
from ,ul Z" vi makes p1 @y W satisfy the third option for proving (u; @}

1) Z" (v @Y va).

* A similar reasoning shows the case for u; : Z(>*D*A) and u, : YA, after
applying the commutativity axiom for convex algebras.

o If u; : ZA and for u, there exist yj : .@A,,ué’ : 2(>¥D¥A) such that y, =
L, ®,4 1y, then there exist v}, v} : B, vy : D'B such that v; ~ V] and v, ~
v, @, VY. There also exist p; : Cpl g (11, Vl) and p, : Cpl 4 (u5, v}). Then using
associativity we can compute probabilities p’, ¢’ such that:

W ©p (H ©g 1) = (1 B 13) By 13
Then v; @, V2~ (V] ©y V3) By V4, and
P1 Gy P21 Cplyg (th @y W3, VI ©pr v3)
and from our assumption for t, we still have that:
o5 (o ) (CF(1g) [ Z° V).

Hence, (1 &5 ) Z" (v, @Y, v») holds via option 3.
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* A similar line of reasoning shows the case for U, : ZA and for u; there exist
Uy ZA, 14+ 2(>*DXA) such that u; = uj @, uy', except that we now need
commutativity as well as associativity to show that there exist probabilities
7', q such that:

(141 &g 1) Bp o = (1 By 12) Spy
e If both u; : Z(>*D*A) and up : Z(>*D*A), then:
>F (o k) (G5 () [e)) 7" v)
>¥ (o k) (65 () () 2" v2)
It follows from guarded recursion and the fact that
CF(m ®p p2) = A(a:1).C% () [a] B, EF (ua) [af],
that then also:
> (o 1) (£ (@) ) []) 27 v &, v2),
and hence the second option for (11 &), ) Z " (v EB\Z, Vv, ) is satisfied.
o If u; : Z(>¥DXA) and for p, there exist u} : ZA,u : 2(>*D*A) such that
Lo = W) Dy 1y, then there exist V4 : 2B, v} : D'B such that v» ~ v} @, Vj.

There also exist p; : Cpl, (15, v4). We again compute probabilities p’, ¢’ such
that:

W By (U Bg ) = My B (U1 By 17)

Then p; still serves as the needed coupling. We also have:

>¥ (or: k) (S (w))le)) 2" 1)
> (o : k) (((§5())lo]) 2" v3)

Then by guarded recursion and the fact that {* (1 ©y ) = A (@:x).8* (1) [a] B
$*(wy)) o], we also have:

>¥ (o k) (((CF (@l 1)) Z " vy &y v3),

which is the last requirement for (i ©j 1) Z" (v, @Y, V,) to hold via the third
condition.

* A similar line of reasoning shows the case for i, : Z(>*D¥A) and for y, there
exist 1] : ZA,ui : 2(>*D¥A) such that u; = p| B,y
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* In the last case, we get:

m=p@en i Vi) N (k) (C) [l 2 V)
le= @y v i Vs >N (k) (C(u) [o] 2 V)
and p1: Cp|%(ﬂ{,V{),p2 : Cpl% (uéavé)

From the axioms of convex algebras we now compute probabilities p’,q’, 7’
such that:

(i @qu1) ®p (1 Br 1) = (U] By H2) By (1 B 1)
(Vi @Bq V1) @p (V281 V7)) = (Vi @y V2) & (V] & V)
Then vi &, v, ~ (V] @y V}) @, (V] & v§) and since
P1©g P22 Cply (11 By pf' V) By VY)

it just remains show that >* (o : k) (§*(uf & 1) [a] Zz" v{'). This follows
from guarded recursion, since

CF (' @ ) = Az x).8%(uy) [o] @7 EF (ua) [et]-

O]

Proof of Lemma 3.7.8. The first statement is trivial statement is trivial by taking
p = 8((a,b)). For the second statement, suppose that t1 % v. We consider each of
the three cases.

e Ifu:2A, v~ Vv and p : Cpl, (1, V'), then we proceed by induction on p: If
p = 6((a,b)) for some a: A and b : B such that a Z b, then f(u) = f(6*a) =
f(a) and g(vV') = g(8%b) = g(b) are related in . by assumption.

If p = p1 ©y P2, let g = Z(pry)(pi) and v; = P (pry)(p;) for i =1,2. By
induction ()" g(v;) and since

flu) = flu oy ) = fu) @)
g(v) =z(vi &) v2) =g(v1) &, 8(v2)

the case follows from Lemma 3.7.7.

 IF 2 Z(EFDRA) and o ) (((EF(1)[@]) 2 V), note that (ot : &) (C(F(1)[t]) =
F(&*(u)[a]). We show this by induction on u: If p : §(u’), then:
gr(f(o(u))lal
= (E*(8(A(B:x).(f(

.:\
=
<
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Hence we may conclude by guarded recursion that

> (o k) (C(F(w)[a]) 7" (&(v))),
which proves that f(11)-%" g(v) via the second condition.

o If there are u; : ZA, 1y : Z(>¥D*A), vi : ZB, v, : DB, and p : Cplgy (u,v1),
such that it = p1; ®p tp and v ~ v @, Vo, and >* (a1 k) ({*(1) (o) Z" ),
then since f(u) = f(t1) @, f(42) and by Lemma 3.4.7 g(v) ~ g(vi) &,
g(v), it suffices by Lemma 3.7.7 and 3.7.5 to show that f(i;)~" g(v1) and
F(1) 7 g(va).

The first one of these is shown by induction on p, similarly to the case of u : ZA
above.

To show that f(12)-7" g(V»), notice that since i : Z(>*D¥A), f(u2) : Z(>*DXA").
Therefore, we only need to show that >* (ot : &) (((£*(F(12)))[0]) 7" g(v2)).
This follows by guarded recursion, similarly to the case for u : Z2(>¥D*A)
above.

O]
Proof of Lemma 3.7.4. By induction on n. For n = 0, we do a case analysis on yL eq; V.

« If u: 21 and 3v': 71 such that v ~ V', and there exists p : Cpleq (1, V),
then PTo(i) = 1, and also PTy(v') = 1. Furthermore, by Lemma 3.4.6(3)
there is an m such that v/ ~ run”v. By Lemma 3.4.8 then, we have that
PT,(v)=PTo(run™v) > PTo(v') = PTo(u) = 1, which proves the statement.

« If u: 2(D"1), then PTo(u) = 0 and the statement is trivially true.

o If there exist i : 21,1 : 2(D"1) such that 4 = y; @, L, and there exist
Vi : 21, v, : D1 such that v ~ v, @) V2, and there exists a p : Cplg, (U1, vi),
then:
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- PTo(u)=p

- By Lemma 3.4.6(3) there is an m such that v; ©, vo ~ run”v. Then
by Lemma 3.4.8, PT,,(v) = PTo(run”v) > PTy(vi @) v2). In addition,
PT()(Vl @p VQ) > p.

Hence, PTo(u) < PT,,(v).
For n =n’ + 1, we again analyse each case for (eq; v.
* The case where u : Z1 is identical to the one above for n = 0.

o If u: 2(D"1) and run(u)&q; v then PT, (1) = PT,/(runu). By the induction
hypothesis for n/, we know that then there is an m such that PT,/(runp) <
PT,.(v), and hence also PT,(u) < PT,,(v).

o If there exist ; : 21,1, : 2(D"1) such that p = @p Uz, and there exist
Vi : 21, v, : D1 such that v ~ v, ®p V2, and there exists a p : CpIeql (W1,v1),
and moreover run(i)€q; v, then:

= PTu(u) =p+ (1= p)PTu((run(1z))).
— From the induction hypothesis for n’ and the fact that run(u,) €q; v2, we

may conclude that there is an m’ such that PT,/(run(u2)) < PT,y(v2).

— From v~ v; ®, v, and Lemma 3.4.6(3), we know that there is an m such
that v @, V2 ~ run™v.

Then by Lemma 3.4.8 we have:

PTim (V) =PT,u(run™v)
>PTw(vid,w2)

=p+(1=p)PTw(v2)

= p+ (1= p)PTy(run(z))

=PT,(1),

which is what we needed to show.

Section 3.8

In preparation for the guarded fundamental theorem 3.8.2 and guarded congruence
theorem 3.8.4 we prove several lemmas which show that jg—’Tm is compatible with
the typing rules in Figure 3.2.
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Lemma .0.5. Let f : 6 — Tand g : Val, — Val_ as well as u : DXc and v : D"(Val,)
such that w <5 v. If forany v: o and V Val, we have that (v <KVal V) —
(f(v) jf’val g(V)) it follows that

(U >>=F 80 f) <ET™ (v >>=§"0g).

or equivalently

Proof. This is a direct consequence of 3.7.8. Looking at the requirements, it suffices

to prove that v <5V2' V implies §*(f(v)) jﬁ’aTtm 8%(g(V)). Using 3.7.8, this follows

from our assumption that (v <KVal V)= (f(v) <kVal g(V)). O

Lemma .0.6. Let f: (01 X 62) — 03 and g : (Val, x Valg,) — Val,, as well as
u jgiTm dandv jgfm e. If we have that

(v <G V) = (w <5 W) = (Fvw) 267 g(V, W)
it follows that

(1 >>=" Av.v >>=" Aw.85(f(v,w)))
<ETM (4 >>= AV.e >>= AW.8"(g(V,W))).

Proof. We apply 3.7.8 with the functions Av.v >>=* Aw.8%(f(v,w)) and AV.e >>
= AW.8"(g(V,W)). Since we have that u jE;Tm d, it suffices to show that

(v <5V V) S (v >>=F w85 (F(v,w)))
<&M (e >>= AW.8(g(V,W))))

Let now v jﬁ;val V, using .0.5 for the functions Aw.8%(f(v,w)) and AW.8(g(V,W)),
it suffices to show that

(w =& W) = (Frw) 257 g(V.W))
and the claim follows. OJ

Corollary .0.7. Let op € {suc,pred} and u j,’;’;m v. Then

D¥(op) (1) =nyi™ D' (0p) (v).

Proof. This is a direct consequence of .0.5. Note that if n = m, then also op(n) =
op(m). O

The arguments for inl, inr, pr; and pr, proceed similarly.
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K, Tm

Corollary .0.8. Assume that uy = kT v, W =5 KT " vy and 3 =g vs3. Then also

0 — 0 =V
g >>=" il I UL Qe ?
n+1 — us n+1 +— v

Proof. We apply the bind lemma for f = .
n+1 —us n+1 —w

thus suffices to show that for any u <,’§|\f’| U we have that f(u) <5™™ g(U).
We proceed by case distinction on u : Nat.
Case:u=0
Then necessarily also U = 0 and thus f(u) = p and g(U) = v,. But y, <&TM v, is
one of our assumptions.
Case:u=n+1
This case is analogous to the previous case. O

Corollary .0.9. Let u <5™™ d and v <5™™ e, then

(U >>="Av.v >>=F Aw.6%((v,w)))

<ETM (4 >>= AV.e >>= AW.8"((V,W))).
Proof. Using .0.6 it suffices to show that

(0 =25 V) = (0 2P W) = () =52 (VW)

which is immediate by the definition of (v, w) <&val (v.w). O
Lemma .0.10. Ler 1 =< G_W Vo and ) <e'™ vy, then
-l <ET™ (v >>= A(lam x.M).v, >>= AW.step(eval (M[W /x]))).

Proof. Unfolding the definition we get

Hy- U
<ETM (v >>= A(lam x.M).vy >>= AW.step(eval (M[W /x])))

(U1 >>=" Av.tp >>=F Aw.A*(v(w)))
<ETM (v >>= A(lam x.M).vy >>= AW.step(eval (M[W /x])))

To show this, we use 3.7.8 on the functions
1. fi £ Av.lp >>=F Aw.AX(v(w))
2. g1 2 A(lam x.M).vy >>=5 AW.step”(eval(M[W /x]))
and it remains to show that assuming v jg’li' lam x.M we get that
(U >>=" Aw.A*(v(w))) <KTm (vz >>= lW.stepV(evaI(M[W/x])))

We proceed by using 3.7.8 once more, this time for the functions
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1. fo & Aw.A%(v(w)) and
2. g2 = AW.step’(eval(M[W /x])).

Now it suffices to prove that assuming (v <§X‘1' lam x.M) and (w ﬂ';lafl W) we get

A¥v(w) <5T™ step”(eval (M[W /x]))
Observe, that by the definition of v <§Xafl lam x.M we immediatly get that
v(w) =ET™ eval(M|W /x]) and thus by Definition 3.7.2 and Lemma 3.7.5 imply the
result. O

Lemma .0.11. Assume 0102 vy as well as
1wV <5V y s (step*A(a: k).ei[a] (v)) <ET™ step”(eval(M[V /x]))
2. W,V <5V3 Y s (step*A (o k).e1[a](v)) <ET™ step”(eval (N[V /x]))
then it follows that

(m >>:K{inlvr—>step'<(l(oc K).e1]a](v)) )

inrv — step*(A(a: k).ex[al(v)

)
KT (w . {mlv + step”(evalM[V /x]) )
T )

inrv — step’(evalN[V /x]

Proof. Again, we use 3.7.8 and considering the assumptions of the lemma, it only

remains to show that given w <§\f'c|,2 W we also have

({inlw—mtep"(l( K).e1]a](v)) >(W)

inrv — step*(A (o : x).ex[a](v))

)
/) ) W)

K, Val
This we can show by a case distinction on w <g" %, W.

Case: inlw <c’§1\ﬁ',2 inlW

In this case it remains to show that

[
~xTm inly — step”(evalM[V
= inrv — step’(evalN[V

step (A (at: Kk).er[a](w)) <5 T™ step”(evalM[W /x])

which follows from the assumptions.

Val
Case: inrw <g j’c,z inrW

In this case it remains to show that
step®(A(a: k).ex[0](w)) <& Tm step”(evalN[W /x])

which again follows from the assumptions.
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Lemma .0.12. Ifu jf[;;(n ox) VY then also

D (next®) (1) =<}y D" (fold) (v).
Proof. We apply .0.5 to f = next® and g £ fold. It thus suffices to show that for
V we have that next®v jz,}/afl fold V. This is however immediate, since
next®y jﬁ)}/afl foldV = (> (a: k).(nextv) (o] jﬁ,}/afl V)

oo (ax).(v jﬁ,}/i' V)

Lemma .0.13. If u <57 v then

(u >>=% Avsstep(A( : k).65(v[a])))

<Ny (V>>="A(foldV).step’(5%(V)))
Proof. We apply 3.7.8 with the functions Av.step* (A (a : k).v[a]) and A (fold V).step”(87(V)).
It thereby suffices to show that if v jﬁ’)}/.afl (fold V) then also

step™(A(a: K).8(v]a])) =50y Step (87(V)).

Note that v jZ’}XiI (foldV) is equivalent to >(o : x).(v][a] jTK[’X;I.T/X] V). Then
>(a: K).(8%(v]a]) <5T . /5 67(V)) by 3.7.8 and it follows by 3.7.2 and 3.7.5 that
this is equivalent to

step*(A(a : k).8%(v]at])) <K1Y, v step’(87(V)).

This concludes the claim. O]

Lemma .0.14. If u <5™™ v and py <5™™ vy then also

.
Loy <5 " VLV

Proof. This is a direct consequence of 3.7.7. O

The Guarded fundamental lemma and congruence lemma

Proof of Lemma 3.8.2. The proof proceeds by induction on M : ng and relies almost
entirely on the compatibility lemmas with the only exception of the M = lam x.M’
case.

Case: lam x.M’
By induction hypothesis, we have that

¥p,8.(p <fa 8) = [M]5 <™ eval(M'[3)).
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Thus we get that
¥p,8.v,V.(p 2V 8) A (v 26V V)
— [M]E, <ET™ eval(M'[8,V /x])
(Vp 5.(p =V §) 5w v.(v <5V ) )
— (M]5, =E"™ eval((M'[8])[V /x]))
(Vp 5.(p <5V §) = [lam x. MY <KV |amx.M’[5])
¥p,5.(p <[V §)
AR K Val,x K,Tm gV /
— 8% ([lam x.M'] ;") <657 8"(lam x.M'[8])
(Vp 5.(p <5V ) = [lam x.M5 <5 5V(|ame'[5]))

Case: MN
Let p -<Kva| d, by induction hypothesis we have [M]g <ET™ eval(M[8]) and

INT5 ngm eval(N[8]). Now .0.10 implies that [MN]§ <ETm eval(MN|8)).
Case: case(L,x.M,y.N)
Let p jF’VaI 0, by induction hypothesis we have

L ILI5 <545, eval(L[8))
2. W V.(v =5V V) = [M]5, <5 eval(M([8,V /x])
3. Yw,W.(w 25" W) — [N]§,, 25T eval(N[8,V /).

Since we can add steps to fit the requirements of .0.11, by applying this lemma we get

([[L]]" - {inl\/f—) step*(A(a : k).[M]5.,) )
p

inrw — step“(4(a : x).[N]f,)

T <eva|(L[5])>>: {inIVl—>step (eval(M[S][V /x])) )
inrV — step(eval (N[8][V /x]))

Observe, that this is precisely
[case(L,x.M,y.M)]5 =<7’ ™ eval(case(L,x.M,y.M)|[5])

Case: unfold M
Let p %Kval 8, by the induction hypothesis we have [M] <’ . ™ eval(M[8]) and

;LX T
now .0.13 implies that [unfold M] 5 _ZJ;TL/X eval(unfold M[§])
The remaining cases follow similarly. O

Proof of Lemma 3.8.4. The proof proceeds by induction on context derivations. All
cases — except for the M = lam x.M’ case — are direct consequences of the compati-
bility lemmas.
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Case:C=lamx.C': ('t 0)= (AF 171 = 1)
Assume M <5" N. We have that C' : (I 6) = (A, (x: 71) F 72) and by the induction

hypothesis it follows that
C'[M) <%’ C'[N]

It now follows that
C'M) <5" C'[N]
2Vp,8.p <Z¥13' 5 — [C'M]]5 =E™™ eval((C'[N])[8])
vp,8,v,V. <p <EVal S Ay <KV3' V)
— [C'M]5, 25T eval((C'[N])[8,V /x])
Vp,(?(p _<K',Va| 6)
& (vv vy <EValy )
- / K'Tm
— [C'M)]5., =z ™ eval((C'[N])[8,V /x])

p.8(p <y 8)
<~
— [lam x.C'[M]]*"* <5Va (lam x.C'[N])[8,V /]

Vp,8(p _<K,Va| §)
H( 8% ([lam x.C'MJIY) =57, 6V<lamx.c’[Nms,V/x1>
& (. 8(p =5V ) = [CIMII <5, (CIVDIS,V /)

& C[M] =5T., CIN]

Case: C=foldC': (' 0) = (AF uX.7)
Assume M <5" N. We have that C' : (T+ 6) = (A F 7[uX.7/X]) and thus by
induction hypothesis we have C'[M] j:[ix‘ o/X] C'[N]. By .0.12 we have that
C'IM] =50y o) C'IV]
& (9p,8.p =5V 8) > [C ML <5 x, eval(C'IND)IS)))
vp,8.(p <5V 8)
( — (DK(nextK) ([[C’[M]]];)) <ZXTT DY (fold ) (eval (C'[N] [5])))
©¥p,8.(p 25V 8) = [fold C'[M]]5 <5y T eval((foldC'[N])[5))
& CIM] =i - CIV]

Case: C = case(L,x.C",y.N): (' o) = (AF 1)
Assume that M jg’r M’. We furthermore have that

1. AFL: 114+ 1
2.C:(T'to)=(Ax:1 1)
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3. Ay:pEN:T

By the induction hypothesis and 3.8.2 it follows directly that C'[M] <¥* C’'[M],
L %TIH Land N j?r N. Thus, for all p and § such that p jz’val 0, we get that

(1) [L]5 =515 eval(L[3])
W, V(v <5Vl y)
— [C'M]]E, <5 eval((C'[M'])[8,V /x])

v
K,Val

(3) W V.(v =5V V) - [N]E, =5 eval(N[8,V /x])
Now, using .0.11 we conclude that

{inlvr—>step (A(o: x).[C'[M]]5 )
inrv — step®(A (o : x).[N]5,)
]

<5 T™ eval(case(L,x.C'[M'],y.N)[8))

[L]5 >>="

and thus we get that

Vp,8.(p =5V §) = [CIM]]E =5T™ eval(C[M'))

p

Case: C = choice”(C’,N) (TFo)=(AF1)
Assume M <§ Um 1t follows from the assumptions that furthermore A+ N : ¢ and

thus by 3.8.2 we get N <& TN N ow the induction hypothesis implies C'[M] <g’ A
C'[M'] and consequently C[ ] <54 C[M’] follows by .0.14.
The remaining cases are similar. O

Section 3.9
Proof of Lemma 3.9.2. Using (3.7) we compute

[hido] > (v) = [¥ (hid}) 2],
= (A%)* Thid) (Y (hidy) <]%

Note that by definition of Y there exists a value Whq , such that
[[Y(hid:))]] K= stepK(nextK( [[Whid,pﬂ K))

and so

[[hldp]]K(V) = (AK)7[[ChOicep(x7fx)]],’:ev?ﬁ%[[whid:p]]val’x
= (A ) (v} [Whig px]-.)

Therefore [hid,]Vah*(v) < <&Val 1 unfolds to

()3 (%20 @ Whia paln) <5 1)



164 CHAPTER 4. MITTEN : A FLEXIBLE MULTIMODAL PROOF ASSISTANT

which by Lemma 3.7.6 is equivalent to
() (((A%)2) @5 (A (Whiapi] ) =5 1)
Since (AX)?([Whia px]%,,) = [hidp]V2 ¥ (v), this concludes the proof. O

Section 3.9

Proof of Theorem 3.9.3. As in Section 3.9, note that there is a value Wegair p such that
eval®(Y(efair,)) = A*(eval® (Wefair,p)). Then

eval®(efairy())
=(A%)* (eval(efairy, (Y (efair,))()))
_ v ((tt@’ffr) >>= Ly A (tt @) ff) >>=F )
Aw.Aeval(if eqbool(v,w) then Wegair p () €lse v)
AK((AK(eval( efairp()))) & (Aktt))
= (A | 3,
A" ((A™F) &y A" (A" (eval (Wetair,p()))))
A* (eval(Y (efairy) () @5 (A¥tt))
— (A%)° @p
AX ((A™FF) @ eval (Y (efair,)()))
A* (eval(efairy () @5 (A* tt))
= (A% | @,
A¥ ((A™fF) @ eval(efairp ()

So that
eval(efairy())
~ (eval(efairy () & tt) & (ff &7 eval(efairy ()
= (tt @gp(lfp)(eval(efairp(>))) EBV% (ff @gl,(l,p)(evaI(efairp<))))
On the other hand,
[hfairy.pa—p)]* =A% ([hida.p1-p) ] (tt) @g [hida.p1—p) 1*(fF))
KT

We will show that [hfair.p;_p)]* =<
TI eval(efairp(>)). By the above and Lemmas 3.7.5

—boo

eval(efair,()) by guarded recursion. So

assume >* ([[hfa|r2 p(1—p) ¢ =
and 3.7.7 it suffices to show

K (ﬂhidzp(lfp)]]ic(tt) jgc’l;" (tt@\;p(lim(eval(efairp<>))>
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and similarly for ff. By Lemma 3.9.2, using Lemma 3.7.7, this reduces to showing
> (tt -<KT:" tt) and >*([hidy.p1—p) ] (tt) <K Tm eval(efairy())). The former of this

bool
follows from Lemma 3.8.2 and the latter is the guarded recursion hypothesis.

For the other direction, we again reason by guarded recursion. Applying the
soundness theorem (Theorem 3.6.1) to the above gives
A*([efair,()]* @) (A*tt))
lefairy ()] = (A)° | @,
A¥ ((A*FF) @5 [efair, ()]¥)

. T
and therefore [efair, ()]~ <K001n

([efairg O &5 (%))
®p ’<EOZ| eval(hidz.p(1—p))
((AKfF) 69; [[efairp<>]]K)

eval(hidy.p(1_p)) is equivalent to (>*)7 applied to

Note that
(Iefairg ()% & (A%t)) & (A1) & [efairy )])
= ((a%tt) @, [efairp()]* ) ©F ((AFF) @5, [efairy ()1%)
A calculation similar to the proof of Lemma 3.9.2 shows that
eval(hid2p(1,p))
can be related in the symmetric, transitive closure of ~ to
(tt 3,1, eval(hidap1_p))) @V% (fF @3, eval(hidap1—p)))

Tm

]]K jKool

Putting this together, the goal [efair, () eval(hid,.p(1_p)) reduces to proving

(%)’ (((A"tt) ®F [efair,O]%) =0" (tt@X eval(hidq)))

where ¢ = 2p(1 — p) and similarly for ff. This follows easily from the guarded
recursion hypothesis. O

Section 3.9
The proof of Theorem 3.9.4 uses Lemma .0.16 and Lemma .0.17 below.

Lemma .0.15 (Geometric Sum). Leta: Q and r: (0, 1) be arbitrary, then
1=

l—rr )

In particular, if a = p and r = (1 — p) with p: (0,1), we get that

Yiop-(1=p)=p(=Utly = 1—(1-p)"

Yisoa-r* =af
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Lemma .0.16. (Geometric series convergence) For any rational € : (0, 1) exists an
n: N suchthat 1 — Y7~ p(1—p)k <e.

Proof. Without loss of generality we may assume that € = zik Indeed, we can prove
that

n 1 n

it suffices to show that Vm.3k.2% > m (which follows by induction on

n
m

Our goal is to prove that Vk.3n.1 — Y= ) p(1 — p)' < i Considering that 1 —
Yl p(1—p)i=(1—p)*and (1-p) = pN for some 1ntegers pw and pp with py < pp
we get that

n—1 n
1 PN) 1 k <PD>
1— 1—p < — & — ) <= & 2°< (=
g;')p( 2k ( 2k PN

But since pp > py + 1 and furthermore for all integers we have that ( %)n > 2, we

get
PNk JANL
() = () ) =2
PN PN

Thus, for any py, pp with (1 —p) = Z—Z and k : .4 the number n £ py -k+ 1
witnesses

n—1
1
Vk.3In.1— 1-p)< —

O]

Lemma .0.17. For any value V, the element eval(hid, V) is related in the symmetric
transitive closure of ~ 10 8§"(V) &, eval(hid, V).

Proof. Let Wyq , be the value such that
evaI(Y(hid;)) = stepV(S"(Wh;d,p))

Then
eval(hid, V) = eval(Y (hid},) V)
~ eval(hld’( (hid’))V)
~ eval(hld Whid,pV)
~ eval(choice? (V,Whigp V))
= SV( )EBP eval(Whig p V)
and since

eval(hid, V) = eval(Y (hid},) V)
~> evaI(WhidP V)

the result follows. OJ
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