
Programming language semantics

in modal type theories

Thesis Defence

Philipp Stassen

August 9th 2024

Aarhus University

1

Introduction

The topics of my Thesis

• Modelling FPC in guarded type theory

• Modelling Probabilistic FPC in guarded type theory

Philipp Stassen, Rasmus Møgelberg, Maaike Zwart, Alejandro

Aguirre, Lars Birkedal

• mitten : a flexible multimodal proof assistant

Philipp Stassen, Daniel Gratzer, Lars Birkedal

2

Proving equivalence of programs

There are three approaches to reason about program equivalence

[Mog91]

1. Operational approach

2. Denotational approach

3. Logical approach

3

Operational Approach

• Operational semantics relates programs with values (partial

function eval)

• Programs M,N : N are equivalent, if eval(M) = eval(N), e.g.

eval(2 + 4) = eval(2 · 3)
• How about functions and terms with free variables?

→ Contextual Equivalence captures this (Definition later)

4

Denotational Approach

• A programming language is interpreted as a certain

mathematical domain.

Theorem (Soundness)
If JMKρ = JNKρ, then M and N are contextually equivalent.

Theorem (Adequacy)
If M and N are contextually equivalent, then JMKρ = JNKρ

5

Side Effects

• Nontermination (Partiality)

• Concurrency

• Probabilistic Choice

• Error handling

• State

Example
Prob(coin = 0) = 1

2 and Prob(coin = 1) = 1
2

6

Modelling Effects with Monads

• Monads endow a set of values A with some extra structure

(write M(A))

• Probabilistic choice by a distribution monad

• Nontermination by a partiality monad.

7

Programming language vs Type Theory

• Certain programming languages double as mathematical logic

(Curry-Howard isomorphism)

• Often referred to as type theories.

• Nontermination breaks the Curry-Howard isomorphism

8

Modelling Probabilistic FPC in

Guarded Type Theory

Contributions

• Modelling Probabilistic FPC in guarded type theory

1. Syntax, operational and denotational semantics

2. Finite distribution monad

3. Guarded convex delay monad

4. Convex delay monad

5. Theory of lifting relations to the convex delay monad

9

Meta Theory - Guarded Type Theory

Requirements

• We want to use guarded type theory

• Type theory does not support non-termination natively

• Programs are probabilistic, and thus terminate to distributions

over values

Clocked Cubical Type Theory ticks all the boxes.

10

Finite Distribution Monad

Definition

For any set A, let D(A) is generated by

δ : A → D(A) ⊕ : (0, 1) → D(A) → D(A) → D(A)

validating, idempotency, commutativity and associativity.

µ︸︷︷︸
p

⊕p ν︸︷︷︸
1−p

11

How to model partiality constructively?

Idea: Define monad L such that L(A) ≃ A+ L(A)

η : A → L(A) step : L(A) → L(A)

• step is an explicit computation step.

• Supposed to be a coinductive type

• We can define the infinite (unproductive) loop ⊥ : L(A).

⊥ = step(⊥)

12

Clocked Cubical Type Theory (CCTT)

CCTT has the ”later-modality” ▷κ (indexed by formal clock κ).

• Elements of ▷κA are available after one step of computation

• We can delay an element a : A to nextκ(a) : ▷κA

• Guarded fixpoint combinator fixκ:(▷κA → A) → A.

• clock quantification ∀κ.A allows us to realize coinductive

types.

13

Guarded Convex Delay Monad

Definition (Guarded Convex Delay Monad)
Let Dκ be such that DκA ≃ D(A+ ▷κ(DκA)). We define

δκ : A → DκA

stepκ : ▷κ(DκA) → DκA

−⊕κ
− − : (0, 1)× DκA× DκA → DκA

14

Convex Delay Monad

Definition (Convex Delay Monad)

D∀A ≜ ∀κ.DκA D∀A ≃ D(A+D∀A)

δ∀ : A → D∀A

step∀ : D∀A → D∀A

−⊕∀
− − : (0, 1) → D∀A → D∀A → D∀A

15

Coinduction - Convex Delay Monad

Example (Geometric Process)
We can define the semantic geometric process geop : N → D∀(N)
satisfying

geop(0) = (δ∀0)⊕∀
p step

∀(geop (1))

= (δ∀0)⊕p step
∀((δ∀1)⊕p step

∀(geop (2)))

= ...

16

Probability of Termination

Definition
We can define a function

PTn : D∀A → [0, 1]

measuring the probability of termination after n computation steps.

17

The language FPC⊕

(types) σ, τ ::= 1 | Nat | µX .τ | . . .
(values) V ,W ::= ⟨⟩ | n (n : N) | lam x .M | foldV | ⟨V ,W ⟩

| inlV | inrV
(terms) L,M,N ::= x | ⟨⟩ | n (n : N) | sucM | lam x .M

| MN | ⟨M,N⟩ | inlM | inrM
| foldM | unfoldM | choicep(M,N) | . . .

18

The language FPC⊕

Γ ⊢ M : σ denotes well-formed terms with variables bound in Γ.

Definition (⊢ relation)

Γ ⊢ M : τ [µX .τ/X]

Γ ⊢ foldM : µX .τ

Γ ⊢ M : µX .τ

Γ ⊢ unfoldM : τ [µX .τ/X]

Γ ⊢ M : σ Γ ⊢ N : σ p : (0, 1)

Γ ⊢ choicep(M,N) : σ . . .

19

The language FPC⊕

Example (Y-combinator)
For any types σ and τ , we may define the Y-combinator

· ⊢ Y : ((σ → τ) → (σ → τ)) → σ → τ .

Example (Geometric process)
For any p : (0, 1) we define the function

geop : Nat → Nat

geop = lam x .choicep(x , geop(x + 1))

20

Collection of Terms and Values

• TmΓ
σ denotes the collection of well-typed terms of type σ in

context Γ

• Valσ denotes the collection of well-typed values of type σ in

the empty context.

• We write Tmσ if Γ is empty

21

Call-by-value Operational Semantics

We may define operational semantics of type:

eval : {σ : Ty} → Tmσ → D∀(Valσ)

Example

eval(choice
1
2 (0, 2)) = δ(0)⊕∀

1
2
δ(2)

eval(id(0)) = step∀(δ(0))

22

Contextual Equivalence

A closing context is a function C : TmΓ
σ → Tm1.

Definition (Contextual Refinement)

Let Γ ⊢ M,N : τ be terms. We say that N contextually refines M

if for any closing context, and for any m there exists an n such that

PTm(eval(C [M])) ≤ PTn(eval(C [N]))

. In this case, write M ⪯Ctx N. We say that M and N are

contextually equivalent (M ≡Ctx N) if M ⪯Ctx N and N ⪯Ctx M.

23

Guarded Denotational Semantics

J−Kκ : Ty → U

...

JµX .τKκ ≜ ▷κJτ [µX .τ/X]Kκ

• Environments ρ : JΓKκ list semantic values for types in Γ.

J−Kκ− : {Γ : Ctx} → {σ : Ty} → TmΓ
σ → JΓKκ → Dκ(JσKκ)

JunfoldMKκρ ≜ JMKκρ >>=κ λv .stepκ(λα.δκ(v [α]))

Jchoicep(M,N)Kκρ ≜ JMKκρ ⊕κ
p JNKκρ

24

Denotational Semantics

Definition (Semantics)

J−K : Ty → U

J−K− : {Γ : Ctx} → {σ : Ty} → TmΓ
σ → JΓK → ∀κ.Dκ(JσKκ)

• Environments ρ : JΓK are lists of semantic values for types in Γ

25

Relating Syntax and Semantics

• Soundness of the semantics JMKρ = JNKρ → M ≡Ctx N

• Adequacy of the semantics: M ≡Ctx N → JMKρ = JNKρ
• Defining logical relation s.t. : M ⪯ N → M ⪯Ctx N

• Necessitates lifting a relation R : A → B → Prop to

R : D∀A → D∀B → Prop.

26

Properties of relational lifting

ν ; ν ′ µ R κ
ν

µ R κ
ν ′

ν ; ν ′ µ R κ
ν ′

µ R κ
ν

(stepκµ1)⊕κ
p (step

κµ2) R
κ
ν

stepκ(λ(α :κ).(µ1 [α])⊕κ
p (µ2 [α])) R

κ
ν

======================================

µ1 R κ
ν1 µ2 R κ

ν2

(µ1 ⊕κ
p µ2) R

κ
(ν1 ⊕∀

p ν2)

aR b

(δκa) R κ
(δ∀b)

µ R κ
ν ∀a, b.aR b → f (a)Sκ

g(b)

f (µ)Sκ
g(ν)

27

Logical Relation

Definition
For M,N : TmΓ

σ we define a relation M ⪯κ,Γ
σ N using guarded

recursion, the relational lifting and induction on types.

28

Soundness of logical relation

Theorem

For any terms Γ ⊢ M : σ and Γ ⊢ N : σ we have

(∀κ.M ⪯κ,Γ
σ N) → M ⪯Ctx N

29

Further Directions

1. Combining and extending the present work with the account

of nondeterminism.

2. Extend the logical relation to account for approximate

relational reasoning (up to a small ϵ), which would allow us,

e.g., to show that constant functions are refinements of their

approximations. ✓

3. Remove the unnecessary computation steps in the

denotational semantics — simplifying many calculations. ✓

30

Logical relation

Value relation

n ⪯κ,Val
Nat n ⋆ ⪯κ,Val

1 ⟨⟩

▷(α : κ).(v [α] ⪯κ,Val
τ [µX .τ/X] V)

v ⪯κ,Val
µX .τ foldV

∀w ,V .w ⪯κ,Val
σ V → v(w) ⪯κ,Tm

τ eval(M[V /x])

v ⪯κ,Val
σ→τ lam x .M

Expression relation

µ ⪯κ,Tm
σ d ≜ µ ⪯κ,Val

σ

κ
d

Final logical relation For M,N : TmΓ
σ we define

M ⪯κ,Γ
σ N ≜

(
∀ρ, δ.(ρ ⪯κ,Val

Γ δ) → JMKκρ ⪯κ,Tm
σ eval(N[δ])

)
31

Proof (Sketch)

1. Fundamental lemma: ∀(M : TmΓ
σ) → M ⪯κ,Γ

σ M.

2. Congruence theorem : For any well-formed context C and

terms M,N, if ∀κ.M ⪯κ,Γ
σ N, then also ∀κ.C [M] ⪯κ,∆

τ C [N].

3. Soundness theorem of the denotational semantics: For any

well typed closed expression · ⊢ M : σ we have that

Dκ
(
J−KVal,κ

)
(evalκM) ≡ JMKκ

4. (∀κ.M ⪯κ,·
1 N) → (eval(M) eq1 eval(N))

5. ∀M,N : Tm1 with eval(M) eq1 eval(N) it follows that

∀n : N ∃m : N .PTn(eval(M)) ≤ PTm(eval(N)).

32

Proof (Sketch)

Definition (Contextual refinement)
We write that M ⪯Ctx N, if for any closing context C it follows

∀n : N ∃m : N .PTn(eval(C [M])) ≤ PTm(eval(C [N]))

.

Proof.
Assume ∀κ.M ⪯κ,Γ

σ N, and let C be a closing context.

• It follows that ∀κ.C [M] ⪯κ,Γ
1 C [N].

• This implies that (eval(C [M]) eq1 eval(C [N]))

• and finally it follows

∀n : N ∃m : N .PTn(eval(C [M])) ≤ PTm(eval(C [N]))

33

A Flexible Type Checker For Modal

Type Theories

Before we start: A word on proof assistants

• Mathematical proofs are difficult and error-prone

• Idea: Write proof in semi-decidable formal language

→ Computer can validate correctness

• Many problems benefit from specialized languages

34

Modalities in Computer Science

Modalities provide abstraction for programming languages

• Information Flow [Kav19]

• Distributed Systems

• Synchronous Programming [Gua18]

• Coinductive Data Types [Clo+15]

as well as reasoning principles in mathematics

• Axiomatic Cohesion [Shu18]

• Guarded Recursion [Nak00]

• Monads/Comonads/Adjunctions

35

MTT — a machine that produces modal type theories

MTT takes as input a description of the modal situation – a mode

theory – and produces a modal type theory

Importantly, MTT has a well developed meta-theory. In particular:

• MTT is sound [Gra+20]

• there is a normalization algorithm for MTT [Gra21]

• MTT enjoys canonicity. [Gra21]

Carefully chosen mode theories recover some of the prior examples.

36

Contribution

mitten is a prototype implementation of MTT.

Like MTT, mitten easily adapts to different modal situations.

Contributions:

1. A normalization algorithm for MTT

2. A bidirectional type checking algorithm for MTT

37

mitten — a type checker with a hole

Without a concrete mode theory, MTT is not a type theory and

mitten not a type checker.

An implementation of a mode theory completes mitten

One has to implement a structure to describe the mode theory:

1. Abstract type of modalities

2. Preorder and equality relation defined on modalities

38

Example: Guarded Recursion – implementation

Instantiating MTT with the modalities

type modality =
| � | 2 | id | (◦) of modality ∗ modality

and predicates

(=) : modality× modality → bool

(≤) : modality× modality → bool

allows us to formalize guarded recursion.

39

Mode Theory Implementations

• This code is both necessary and sufficient: the general word

problem for mode theories is undecidable!

• Equality for MTT is decidable iff the mode theory is

• In practice: Implementing a mode theory requires relatively

few lines of code.

40

Normalization

• Normalization for MTT has been proven by Gratzer [Gra21].

• Although the proof is constructive, it is not clear how to

extract an algorithm.

• Restricting the mode theories allowed us to implement an

algorithm based on normalization-by-evaluation [Abe13].

• A weak-head normal form algorithm seems more promising.

41

Bidirectional Type Checking Algorithm

At this point, we utilize the entire ML-signature of the mode

theory:

1. Equality of terms uses normalization and equality of modalities

2. At every stage, we carefully check modes and modalities

3. Use ≤ to validate the correct usage of variables.

42

Summary — What is mitten?

mitten is an adjustable type checker and:

Flexible The underlying normalization algorithm and type

checker do not depend on specifics of the modalities

Expressive MTT extends MLTT (cubical variants already exist).

Simple Implementing a type checker is reduced to a simpler

problem.

43

Going forward

• Generalize mitten

• Make it usable by integrating this technique into a main

stream proof assistant.

• Good class of decidable mode theories?

44

Thanks

Github

https://github.com/logsem/mitten_preorder

45

https://github.com/logsem/mitten_preorder

Usage

Input

let next : (A : U<0>) -> A -> << l | A >> @ T =

fun A -> fun x -> mod l x

normalize next Nat 2 at << l | Nat >> @ T

Output

Computed normal form of

(ap () (ap () next Nat) 2)

as

(mod (l) 2)

46

	Introduction
	Modelling Probabilistic FPC in Guarded Type Theory
	A Flexible Type Checker For Modal Type Theories

